DETERMINING AN OPTIMAL ROUTE FOR VISITATION OF TOURIST OBJECTIVES IN TIMIS COUNTY

Ștefania-Andreea BĂCILĂ ¹, Adina Patricia Mărioara CRISTA ¹, Marinela-Alina MOCIAN ¹, Ciprian Ioan RUJESCU ^{#1}, Ioana Anda MILIN ¹

¹University of Life Sciences "King Mihai I" from Timișoara, Faculty of Management and Rural Tourism, Romania

RESEARCH ARTICLE

Abstract

The list of tourist attractions in Timiş County is constantly changing. The existence of new routes, the time required to travel the distances between the attractions, make the optimal route to travel the attractions change over time. The paper proposes a list of attractions considered important to be viewed and presents a way of working to determine an optimal route to be achieved using the estimated time by a vehicle navigation application. Certain opinions are also expressed regarding the application of the Traveling Salesman Problem in the field of tourism.

Keywords: Tourist routes, Timiş County, Romania, Traveling Salesman Problem #Corresponding author: Ciprian Ioan Rujescu, e-mail: rujescu@usvt.ro

INTRODUCTION

The optimal passage of certain points is a classic concern in the field of operational research. Graph theory indicates algorithms used for this purpose. Their use has long been a scientific concern with the aim of reducing travel expenses or time spent, most often in the military, industrial, economic or other fields and very rarely in private fields. The relatively complicated calculations have meant that these studies have long been bypassed by tourists, either in private or through travel agencies proposing tourist itineraries. Currently, however, solutions are emerging that simplify the approach to this topic, thanks to predefined software modules (Koh K., 2023; Panneerselvam R., 2023).

The Traveling Salesman Problem is the mathematical model used in this paper. Specifically, given a list of locations for which the distance between them is known (or the travel time for the distances), the goal is to find a route with a minimum length such that each location is visited once. (SAS documentation 2025; Matai, 2010; Gutin 2006).

The purpose of the paper is to specifically analyze a tourist route based on important objectives in Timiş County and to determine an optimal route for their travel. Another purpose is to update at a didactic approach the list of mathematical models and solutions for solving their applications within the programs of applied mathematics disciplines in the field of tourism.

Timişoara is located close to the center of Timiş County. The distance to the furthest point of the county is slightly more than 100 km. The European Road network is of good quality. The A_1 motorway runs through Timiş County from the border with Arad County to the border with Hunedoara County, over a section of approximately 96 km. This helps to quickly transit the county. The networks of communal or agricultural roads, even in the mountainous area of the county, roads developed in recent times, bring new possibilities for approaching tourist routes between different localities.

MATERIAL AND METHOD

Travel time between locations was determined using the Google Maps application. (Google Maps, 2025). In order to solve the Graph Theory problem, more precisely determining the optimal path, SAS Studio -Network Optimization/ Traveling Salesman Problem – Optnet Procedure, version 3.8, was used.

The localities and tourist attractions proposed as points on the route are shown in table 1.

Proposed localities and tourist attractions

Localities	Tourist attractions	
Băile Calacea	Geothermal pool	
Pietroasa	Blue Cave	
Tomești	Monastery Izvorul lui Miron	
Gătaia	Monastery Săraca	
Bucovăț	Dendrological park Bazoş	
Recaș	Recaș Winery	
Herneacova	Herneacova Domain	
Satchinez	Banat Delta - Satchinez swamps	
Fârdea	Lake Surduc	
Nădrag	Cornet Waterfall	

RESULTS AND DISCUSSIONS

Băile Calacea is a locality in the commune of Orțișoara. It has a recreational area bordered by a centuries-old forest. Geothermal waters with a temperature of 38-39 C are used in the treatment base but also for relaxation purposes (Planiada, 2025).

Pietroasa commune is in the east of Timis county, at the base of the Poiana Ruscă Mountains. The wooden churches on the territory of this locality and of the neighbouring localities, with an age of approximately 3 centuries, the traditional houses, the local producers, bring an authentic aspect to the area. The caves in the area, through the related tourist routes and the organized cultural events bring a significant number of tourists, in all periods of the year (Pietroasa City Hall, 2025). Nearby is the Tomesti locality, in the vicinity of which we find recreational areas, accommodation spaces and restaurants but also agrotourism guesthouses. Important points of attraction are the monasteries in the area (Tomești Commune, 2025).

Gătaia is a town in the south of Timiş County. In the vicinity, near the village of Şemlacul Mic, you can visit the Săraca Monastery, which has an old church built in the 15th century (Moisescu C., 2001).

The Bazoş Dendrological Park was established in the early 1900s and is located in the territory of the Bucovăț commune (Milea, 2012). It has a large number of plant species that are not specific to the area but are currently adapted.

A representative wine-growing area for western Romania is the city of Recaş. The Recaş wineries bring Romanian wine to a category of success at an international level (Mălăescu, 2014).

In the vicinity of the city, there is Herneacova, with an adventure park, riding fields and recreational areas that bring a large number of tourists.

The marshes in the vicinity of Satchinez, with various species of waterfowl, bring a different landscape than expected in this plain area, being comparable in some aspects, in terms of fauna and flora, to the Danube Delta (Ariton, 2017).

Lake Surduc in the commune of Fârdea brings tourists interested in water sports but also in the neighboring recreational areas (Sicoe-Murg, 2022).

The town of Nădrag, located in the mountainous area in eastern Timiș county, has a series of tourist routes that offer an attractive natural setting throughout the year (Mateoc N., 2023).

Solving a problem that involves determining such an optimal route, which includes all localities, through an undirected search can be done with a very large number of variants. For n localities, this results in (n-1)! variants (Universal Teacher Publications, 2007-2014).

This can lead to a very high number of variants when the number of localities is large. For example, if we have 11 localities, the number of route variants reaches (11-1)!=10! That is,

10x9x8x...x1=3628800

variants. This number is certainly impossible to verify.

Mathematically, the problem is to minimize the total cost of the route,

$$\min \sum_{i,j} c_{ij} x_{ij}$$

where c_{ij} represents the cost of traveling the distance between locations i and j (which can also be the duration of the trip) and x_{ij} represents a binary variable (Hoffman, 2013) which is described by the expression

$$x_{ij} = \begin{cases} 1, \text{ if } i \to j \text{ is in the tour} \\ 0, \text{ otherwise} \end{cases}$$

Theoretically following the way, the mathematical model is described it is found that there are several variants of this problem.

Regarding symmetry, there is a situation in which $c_{ij}=c_{ji}$, meaning the costs are equal in both directions. When we refer to the time travelled, the symmetry is not fulfilled. Traveling in one direction can be much different in time compared to traveling in the opposite direction, at certain times of the day.

Starting from the locations in table 1, the travel time was determined using Google Maps, with vehicle category. The results are shown in Table 2.

Table 2

Start	Destination	Travel time (minutes)	Start	Destination	Travel time (minutes)
Timișoara	Băile Calacea	31	Bucovăț	Recaș	19
Timișoara	Pietroasa	75	Bucovăț	Herneacova	25
Timișoara	Tomești	73	Bucovăț	Satchinez	43
Timișoara	Gătaia	59	Bucovăț	Fârdea	54
Timișoara	Bucovăț	22	Bucovăț	Nădrag	70
Timișoara	Recaș	32	Recaș	Timișoara	29
Timișoara	Herneacova	38	Recaș	Băile Calacea	39
Timișoara	Satchinez	41	Recaș	Pietroasa	56
Timișoara	Fârdea	67	Recaș	Tomești	53
Timișoara	Nădrag	82	Recaș	Gătaia	72
Băile Calacea	Timișoara	34	Recaș	Bucovăț	15
Băile Calacea	Pietroasa	81	Recaș	Herneacova	10
Băile Calacea	Tomești	80	Recaș	Satchinez	45
Băile Calacea	Gătaia	84	Recaș	Fârdea	48
Băile Calacea	Bucovăț	37	Recaș	Nădrag	62
Băile Calacea	Recaș	40	Herneacova	Timișoara	37
Băile Calacea	Herneacova	46	Herneacova	Băile Calacea	47
Băile Calacea	Satchinez	13	Herneacova	Pietroasa	63
Băile Calacea	Fârdea	72	Herneacova	Tomești	61
Băile Calacea	Nădrag	87	Herneacova	Gătaia	79
Pietroasa	Timișoara	77	Herneacova	Bucovăț	25
Pietroasa	Băile Calacea	84	Herneacova	Recaș	9
Pietroasa	Tomești	13	Herneacova	Satchinez	54
Pietroasa	Gătaia	118	Herneacova	Fârdea	55
Pietroasa	Bucovăț	63	Herneacova	Nădrag	69
Pietroasa	Recaș	55	Satchinez	Timișoara	37
Pietroasa	Herneacova	63	Satchinez	Băile Calacea	13
Pietroasa	Satchinez	88	Satchinez	Pietroasa	89
Pietroasa	Fârdea	42	Satchinez	Tomești	87
Pietroasa	Nădrag	57	Satchinez	Gătaia	87
Tomești	Timișoara	75	Satchinez	Bucovăț	43
Tomești	Băile Calacea	81	Satchinez	Recaș	48
Tomești	Pietroasa	13	Satchinez	Herneacova	54
Tomești	Gătaia	116	Satchinez	Fârdea	80
Tomești	Bucovăț	60	Satchinez	Nădrag	95

Travel time (minutes) between localities with tourist attractions

Tomești	Recaș	53	Fârdea	Timișoara	66
Tomești	Herneacova	61	Fârdea	Băile Calacea	75
Tomești	Satchinez	87	Fârdea	Pietroasa	41
Tomești	Fârdea	39	Fârdea	Tomești	39
Tomești	Nădrag	55	Fârdea	Gătaia	103
Gătaia	Timișoara	60	Fârdea	Bucovăț	54
Gătaia	Băile Calacea	78	Fârdea	Recaș	48
Gătaia	Pietroasa	112	Fârdea	Herneacova	57
Gătaia	Tomești	110	Fârdea	Satchinez	80
Gătaia	Bucovăț	57	Fârdea	Nădrag	19
Gătaia	Recaș	67	Nădrag	Timișoara	80
Gătaia	Herneacova	75	Nădrag	Băile Calacea	89
Gătaia	Satchinez	88	Nădrag	Pietroasa	56
Gătaia	Fârdea	100	Nădrag	Tomești	54
Gătaia	Nădrag	95	Nădrag	Gătaia	102
Bucovăț	Timișoara	22	Nădrag	Bucovăț	69
Bucovăț	Băile Calacea	32	Nădrag	Recaș	62
Bucovăț	Pietroasa	62	Nădrag	Herneacova	71
Bucovăț	Tomești	60	Nădrag	Satchinez	95
Bucovăț	Gătaia	57	Nădrag	Fârdea	19

Source: Own calculations using Google Maps

These data were used to determine the optimal route as a travel time, which would allow visiting all these points.

Since the travel time between the locations was determined as the fastest option generated by the Google Maps application, there is a possibility that sometimes the route is not the most suitable option from a tourist point of

view. These situations can be established concretely, choosing the most convenient route between the locations.

The order of travel of the points is presented in table 3. The results are those obtained after solving the Traveling Salesman Problem using SAS Studio.

Table 3

The optimal route and total	l travel time	between lo	calities with	tourist attract	ions
-					

.. .

. .

. .

Edge	Start	Destination	Travel time (minutes)
1	Timișoara	Băile Calacea	31
2	Băile Calacea	Satchinez	13
3	Satchinez	Bucovăț	43
4	Bucovăț	Herneacova	25
5	Herneacova	Recaș	10
6	Recaș	Pietroasa	55
7	Pietroasa	Tomești	13
8	Tomești	Fârdea	39
9	Fârdea	Nădrag	19
10	Nădrag	Gătaia	95
11	Gătaia	Timișoara	59
Total travel time			402 minutes

Source: Own calculations using SAS Studio

A presentation of the travel routes and their order is shown on the map of Timiş County, in Figure 1.

The time spent at the tourist attractions can be reported to the total travel time. In this case, it is 402 minutes. This will obtain a maximum of this ratio.

The data can be divided into several subgroups, and for each one an optimal route can be established. This approach can be carried out when the route is divided over several days.

Since the travel time between two localities is different at different times of the day, it is necessary to determine these values depending on the time of day. Congested or light traffic at certain times of the day is often periodic and allows good approximations.

Approximating travel time using Google Maps can also be done for other forms of travel, not just for cars. It can be done for hiking, cycling etc. This will allow for different routes from the general one. These can relate to the initial route.

Source: Own representation using NACLR map format (NACLR, 2025)

Figure 1 The optimal route between localities with tourist attractions in Timis County

CONCLUSIONS

The large number of variants through which these trips can be made can be reduced using algorithms from graph theory. The benefits are immediate and can be related to saving time, optimizing travel costs but also to increasing the number of objectives that can be viewed in a fixed time.

In an indirect way, planning optimal routes brings a development of tourist activity, by increasing the number of people at a certain destination point. The time spent at tourist attractions compared to the time spent in the vehicle increases. The benefits on the local economy can be obvious.

The working method can be extended to other tourist areas but also for much larger routes.

Regarding the didactic aspect, the presentation of software packages that can solve problems of this type brings important benefits in improving the working and planning of experts in the field of tourism.

ACKNOWLEGMENTS

The mathematical processing of the data was carried out using the SAS Studio application. The use was made possible through the partnership with University of Life Sciences "King Mihai I" from Timişoara.

REFERENCES

- Ariton, A. B., Grad, I., Csösz, I., 2017. Differences and similarities in types of wetlands Satchinez swamp and Danube Delta reservation, Lucrări Științifice Management Agricol, 19(1)
- Google Maps, 2025, <u>https://www.google.ro/maps</u>, accessed at 10.03.2025
- Gutin, G., Punnen, A. P.-Eds., 2007. Combinatorial optimization. The traveling salesman problem and its variations. Springer, 1-24
- Hoffman, K. L., Padberg, M., Rinaldi, G., 2013. Traveling salesman problem. Encyclopedia of operations research and management science, 1, 1573-1578.
- Koh, K. M., Dong, F.,Tay, E. G., 2023. Introduction to graph theory. World Scientific, 1-36
- Mălăescu, I. M., Dobrei, A., Dobrei, A., Drăgunescu, A., Velicevici, G., & Nistor, E., 2014. Studies concerning the development of viticulture on Arad, Timis and Caras-Severin areas, Journal of Horticulture, Forestry and Biotechnology, 18(1), 96-103
- Matai, R., Singh, S. P., Mittal, M. L. 2010. Traveling salesman problem:an overview of applications, formulations, and solution approaches.Traveling salesman problem, theory and applications, 1(1), 1-25.
- Mateoc-Sirb, N., Ciolac, R., Peev-Otiman, P. D., Manescu, C., Albu, S., Raicov, M., Mateoc, T. (2023). Opportunities for Developing Tourism in Areas with Tourism Potential in the West Development Region of Romania.Lucrări Științifice Management Agricol, 25(2), 101.
- Milea, Á., 2012. Parcuri dendrologice și grădini botanice în Transilvania.Caiete de Antropologie Istorică, Year XI, 1,2
- Moisescu, C., 2001. Arhitectura românească veche, Editura Meridiane, Vol. 1

- National Agency for Cadastre and Land Registration, http://www.ancpi.ro/ ANCPI, accessed at 01.02.2025
- Panneerselvam, R., 2023. Operations research. Third Edition, Eastern Economy Edition, PHI Learning Pvt. Ltd.
- Planiada,<u>https://planiada.ro/destinatii/timis/baile-calacea-</u> 7, accessed at 10.03.2025
- Pietroasa City Hall, https://www.ghidulprimariilor.ro/ro/businesses/vie w/city_hall/PRIM%C4%82RIA-PIETROASA/117678, accessed at 11.03.2025
- SAS® 9.4 and SAS® Viya® 3.2 Programming Documentation, 2025, The Mixed Integer Linear Programming Solver, available at: https://documentation.sas.com/doc/en/pgmsascd c/9.4 3.2/casmopt/casmopt milpsolver_example s04.htm, accessed at 20.02.2025
- Sicoe-Murg, O. M., Mateoc, T., Mateoc-Sirb, N., Dincu, A.M., Şonca, B., 2022. Study on the development of Făget area, Timiş county, Romania, based on area specific resources.SGEM, 22(5.1), 677-684.
- Tomești commune, <u>https://tomesti.ro/</u>, accessed at 11.03.2025
- Universal Teacher Publications, 2007-2014, Travelling Salesman Problem, available at: http://www.universalteacherpublications.com/univ /ebooks/or/ch6/travsales.htm, accessed at 10.03.2025