Annals of the University of Oradea, Fascicle: Ecotoxicology, Animal Husbandry and Food Science and Technology, Vol. XVIII/B 2019 Analele Universitatii din Oradea, Fascicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentara, Vol.XVIII/B 2019

ON DIFFERENTIAL SUBORDINATION RESULTS FOR P-VALENT FUNCTIONS

Cătaș Adriana*, Șendruțiu Roxana**

* University of Oradea, Faculty of Sciences, 1 Universității St, 410087, Oradea, Romania, e-mail: acatas@gmail.com

**University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048, Oradea, Romania, e-mail: roxana.sendrutiu@gmail.com

Abstract

In this paper we derive some applications of first order differential subordination and superordination results involving a generalized multiplier transformations.

Key words: multiplier transformations, differential subordination, differential superordination.

INTRODUCTION

1.

Denote by *U* the open unit disc of the complex plane:

$$U = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Let \mathcal{H} be the class of analytic functions in U and for $a \in \mathbb{C}$ and $n \in N$ let $\mathcal{H}[a,n]$ be the subclass of \mathcal{H} consisting of functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, z \in U.$$

Let $\mathcal{A}(p,n)$ denote the class of functions f(z) normalized by

$$f(z) = z^{p} + \sum_{k=p+n}^{\infty} a_{k} z^{k}, (p, n \in \mathbb{N} := \{1, 2, 3, ...\})$$

which are analytic in the open unit disc. In particular, we set $\mathcal{A}(p,1) := \mathcal{A}_p$ and $\mathcal{A}(1,1) := \mathcal{A} = \mathcal{A}_1$.

Let

$$\mathbf{A}_{n} = \{ f \in \mathbf{H}(U), \ f(z) = z + a_{n+1}z^{n+1} + \dots \}$$

with $\mathcal{A}_1 = \mathcal{A}$.

We denote by Q the set of functions *f* that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$\mathbf{E}(f) = \{\zeta \in \partial \mathbf{U} : \lim_{z \to \zeta} f(z) = \infty\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Since we use the terms of subordination and superordination, we review here those definitions.

Let $f, F \in \mathcal{H}$. The function f is said to be subordinate to F or F is said to be superordinate to f, if there exists a function w analytic in U, with w(0)=0 and |w(z)|<1, and such that f(z) = F(w(z)). In such case we write f < F or f(z) < F(z).

If *F* is univalent, then $f \prec F$ if and only if f(0)=F(0) and $f(U) \subset F(U)$.

Since most of the functions considered in this paper and conditions on them are defined uniformly in the unit disk U, we shall omit the requirement " $z \in U$ ".

Let $\psi : \mathbb{C}^3 \ge \overline{U} \to \mathbb{C}$, let *h* be univalent in *U* and $q \in Q$. In [6] the authors considered the problem of determining conditions on admissible function ψ such that

(1.2) $\psi(p(z), zp'(z), z^2p''(z); z) \prec h(z)$

implies $p(z) \prec q(z)$, for all functions $p \in \mathcal{H}[a,n]$ that satisfy the differential subordination (1.2).

Moreover, they found conditions so that the function q is the "smallest" function with this property, called the best dominant of the subordination (1.2).

Let $\varphi : \mathbb{C}^3 \times \overline{U} \to \mathbb{C}$, let $h \in \mathcal{H}$ and $q \in \mathcal{H}[a,n]$. Recently, in [7] the authors studied the dual problem and determined conditions on φ such that (1.3) $h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z)$

implies $p(z) \prec q(z)$, for all functions $p \in Q$ that satisfy the above differential superordination.

Moreover, they found conditions so that the function q is the "largest" function with this property, called the best subordinant of the superordination (1.3).

For two functions

$$f(z) = z^{p} + \sum_{k=p+n}^{\infty} a_{k} z^{k} \text{ and } g(z) = z^{p} + \sum_{k=p+n}^{\infty} b_{k} z^{k},$$

the Hadamard product of f and g is defined by

$$(f * g)(z) := z^{\mathfrak{p}} + \sum_{k=p+n}^{\infty} a_k b_k z^k.$$

MATERIAL AND METHOD

2. PRELIMINARY RESULTS

We begin our investigation by recalling here a generalized differential operator defined in [3].

Definition 2.1. [3] Let $f \in \mathcal{A}(p,n)$. For $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $\lambda \in \mathbb{R}$, $\lambda \ge 0$, $l \ge 0$, we define the multiplier transformations $I_p^m(\lambda, l)$ on $\mathcal{A}(p,n)$ by the following infinite series

(2.1)
$$I_p^m(\lambda, l)f(z) \coloneqq z^p + \sum_{k=p+n}^{\infty} \left[\frac{p+\lambda(k-p)+l}{p+l}\right]^m a_k z^k.$$

It follows from (2.1) that

(2.2)

$$(p+l)I_p^{m+1}(\lambda,l)f(z) = [p(1-\lambda)+l]I_p^m(\lambda,l)f(z) + \lambda z(I_p^m(\lambda,l)f(z))'.$$

Remark 2.1 For p=1, l=0, $\lambda \ge 0$, the operator $I_1^m(\lambda, 0) \equiv D_{\lambda}^m$ was introduced and studied by Al-Oboudi [1] which reduces to the Sălăgean differential operator [8] for $\lambda = 1$. The operator $I_1^m(1, l) \equiv I_l^m$ was studied recently by Cho and Srivastava [4] and Cho and Kim [5].

In this paper, we will derive several subordination results involving the operator $I_p^m(\lambda, l)$. In order to prove our main results, we also need the following result.

Lemma 2.1 [6] Let q be univalent in $U, \gamma \in \mathbb{C}^*$ and suppose

$$\operatorname{Re}\left[1+\frac{zq''(z)}{q'(z)}\right] > \max\left\{0, -Re\frac{1}{\gamma}\right\}.$$

If *h* is analytic in *U*, with h(0) = q(0) and $h(z) + \gamma z h'(z) \prec q(z) + \gamma z q'(z)$,

then $h \prec q$, and q is the best dominant.

3. MAIN RESULTS

Theorem 3.1. Let q be univalent in U, with q(0) = 1, $\alpha \in \mathbb{C}^*$, m, $\beta \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ and suppose

$$\operatorname{Re}\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\left\{0,-\frac{p+l}{\lambda}Re\frac{1}{\alpha}\right\}.$$

If $f \in \mathcal{A}(p,n)$ satisfies the subordination (3.1)

$$\frac{I_p^m(\lambda,l)f(z)}{z^p} + \frac{\alpha}{z^p} \left(I_p^{m+1}(\lambda,l)f(z) - I_p^m(\lambda,l)f(z) \right) < q(z) + \frac{\alpha\lambda}{p+l} zq'(z),$$

then

$$\frac{I_p^m(\lambda,l)f(z)}{z^p} \prec q(z)$$

and q is the best dominant of (3.1).

Proof. We define the function

(3.2)
$$h(z) \coloneqq \frac{l_p^m(\lambda, l)f(z)}{z^p}.$$

Differentiating (3.2) with respect to z and using the identity (2.2) in the resulting equation we have

$$\frac{zh'(z)}{h(z)} = \frac{1}{\lambda} \left\{ (p+l) \frac{l_p^{m+1}(\lambda,l)}{l_p^m(\lambda,l)} - [p(1-\lambda)+l+\lambda p] \right\}.$$

Therefore, we obtains

$$\frac{l_p^m(\lambda,l)f(z)}{z^p} + \frac{\alpha}{z^p} \left(I_p^{m+1}(\lambda,l)f(z) - I_p^m(\lambda,l)f(z) \right) = h(z) + \frac{\alpha\lambda}{p+l} z h'(z).$$

The subordination (3.1) from the hypothesis becomes

$$h(z) + \frac{\alpha\lambda}{p+l} z h'(z) \prec q(z) + \frac{\alpha\lambda}{p+l} z q'(z).$$

We apply now Lemma 2.1 with $\gamma = \frac{\alpha\lambda}{p+l}$ to obtain the conclusion of the theorem.

If we consider m = 0 in Theorem 3.1 we obtain the following result.

Corollary 3.1 Let q be univalent in U, with q(0) = 1, $\alpha \in \mathbb{C}^*$ and suppose

$$\operatorname{Re}\left[1 + \frac{zq''(z)}{q'(z)}\right] > \max\left\{0, -\frac{p+l}{\lambda}Re\frac{1}{\alpha}\right\}.$$

(3.3)
$$(1-\alpha)\frac{f(z)}{z^p} + \alpha \frac{l_p^1(\lambda,l)f(z)}{z^p} \prec q(z) + \frac{\alpha\lambda}{p+l}zq'(z),$$

then

$$\frac{f(z)}{z^p} \prec q(z)$$

and q is the best dominant of (3.3).

We consider a particular convex function $q(z) = \frac{1+Az}{1+Bz}$ to give the following application to Theorem 3.1.

Corollary 3.2 Let $\alpha \in \mathbb{C}$, $A \neq B$ such that $-1 \leq B \leq A \leq 1$ and Re $\alpha > 0$. If $f \in \mathcal{A}(p,n)$ satisfies the subordination

(3.4)
$$(1-\alpha)\frac{l_p^m(\lambda,l)f(z)}{z^p} + \alpha \frac{l_p^{m+1}(\lambda,l)f(z)}{z^p} < \frac{1+Az}{1+Bz} + \frac{\alpha\lambda}{p+l}\frac{(A-B)z}{(1+Bz)^2}$$

then

$$\frac{l_p^m(\lambda,l)f(z)}{z^p} \prec \frac{1+Az}{1+Bz}$$

and $q(z) = \frac{1+Az}{1+Bz}$ is the best dominant of (3.4).

Taking $q(z) = \frac{1+z}{1-z}$ in Theorem 3.1 we obtain the following corollary.

Corollary 3.3 Let $\alpha \in \mathbb{C}$ and Re $\alpha > 0$. If $f \in \mathcal{A}(p,n)$ satisfies the subordination

(3.5)
$$(1-\alpha)\frac{l_p^m(\lambda,l)f(z)}{z^p} + \alpha \frac{l_p^{m+1}(\lambda,l)f(z)}{z^p} < \frac{1+z}{1-z} + \frac{\alpha\lambda}{p+l}\frac{2z}{(1-z)^2}$$

then

and

$$\frac{l_p^m(\lambda,l)f(z)}{z^p} < \frac{1+z}{1-z}$$

 $q(z) = \frac{1+z}{1-z}$ is the best dominant of (3.5)

REFERENCES

- 1. G.S.Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin (1983).
- 2. F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 27, 1429-1436, (2004).
- 3. T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35(2), 287-292, (2002).
- 4. A.Cătaş, On certain class of p-valent functions defined by a new multiplier transformations, Proceedings Book of the International Symposium G.F.T.A., Istanbul Kultur University, Turkey, 241-250, (2007).
- 5. N.E. Cho and H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37(1-2) (2003), 39-49.
- 6. N.E. Cho and T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
- 7. S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
- 8. S.S. Miller, P.T. Mocanu, Briot-Bouquet differential superordinations and sandwich theorems, J. Math. Anal. Appl., {\bf 329}(2007), No. 1, 327-335.