SOIL AND YIELD LOSSES ON EROSIONAL SOILS IN DIFFERENT CROPS FROM NORTH WESTERN ROMANIA

Brejea Radu*

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea, Romania, e-mail: rbrejea@yahoo.com

Abstract

The paper is based on the researches carried out during 2007-2009 in the Agricultural Research and Development Station Oradea in the plots for check flow. The soil losses were determined every year; the biggest were registered in the variant with clean fallow, followed by the variants with maize seeded from top to valley, maize seeded on the level curves, wheat and pasture. The soil erosion had a bigger effect in the variant with maize seeded from top to valley in comparison with the variant with maize seeded on the level curves because bigger differences were registered between the yields from top of the hill in comparison with the yields registered at the base of the hill.

Key words: soil erosion, maize, wheat, clean fallow, pasture.

INTRODUCTION

Bihor County occupies an important part of the North-Western Romania. In the Bihor County, an area of 200,000 ha (38 % from the agricultural land) has lands with slopes bigger than 5 %, were erosion is possible. The researches regarding the erosion from this area started in 1983 by Colibaş and Mihuţ, in Hidişelu de Sus, and Pocola and researches regarding the soil management against erosion were made. After 1996, Domuţa started the researches in Pocola; during 1990-1994 the researches were carried out in Beiuş and after that in Oradea; the researches regarding the soil erosion determinations using the control plot and regarding the soil management (crop rotation, green manure, chemical fertilization) were made, as well, in Oradea (Domuta, 1999, 2005, 2006).

MATERIAL AND METHODS

The researches were carried out during 2007-2009 in Oradea on a hill with 10% slope. The plots for the soil erosion measurement were placed in the 2000 year in the following variants: clean fallow, maize from top to valley, maize on the level curve direction, wheat, pasture. The plots' dimensions were 45x3.5 m and metal panels were placed at the base of the plots as well as soil dams between the plots on the hill.

Four repetitions were harvested in every variants with maize in the top and in the base of the hill. The yield data were calculated by variance analysis method.

RESULTS AND DISCUSSIONS

Erosion during the research period

The annual rainfall during the researched period were of 556.1 mm in 2007, 585.7 mm in 2008 and of 501.4 mm in 2009. The month with maximum rainfall was September (91.2 mm) in 2007, June (92.1 mm) in 2008 and June (97.6 mm), too in 2009 (table 1).

Table 1

Table 2

Monthly rainfall during the agricultural year, Oradea 2007-2009

No.	Year		Months										Total	
		X	XI	XII	I	II	III	IV	V	VI	VII	VIII	IX	
1.	2007	24.4	27.4	9.7	36.8	69.3	13.0	3.2	80.6	50.5	67.6	82.4	91.2	556.1
2.	2008	75.1	62.6	29.4	21.3	12.5	67.9	43.3	38.9	92.1	69.3	27.3	46.0	585.7
3.	2009	29.9	33.7	62.6	21.2	36.1	60.2	13.3	27.1	97.6	21.9	89.4	8.4	501.4

The maximum rainfall registered in 24 hours were of 20.4 mm in June 2007, of 25.6 mm in August 2008 and of 60.5 mm in August 2009. The values registered in August 2009 is bigger than multiannual maximum value with 116.8% (table 2).

Maximum rainfall registered in 24 hours. Oradea 2007-2009

		IVIU	Ammun	Tanna	iii iegi.		1 III 2-T	Hour	is, Ora	aca 200	<i>31 200.</i>	,	
c :c ::		Months											
Specification	X	XI	XII	I	II	III	IV	V	VI	VII	VIII	IX	
2007	2.0	3.4	12.4	19.0	7.3	16.0	14.8	9.8	20.4	11.8	23.4	2.4	11.9
2008	11.2	14.5	15.0	7.1	5.5	10.5	6.3	9.6	21.5	10.5	60.5	7.1	14.8
2009	9.6	5.7	7.4	7.5	11.2	5.6	1.0	20.4	11.4	10.2	25.6	20.4	11.46
Multiannual	21.6	39.0	28.1	38.5	44.2	85.8	61.0	49.3	41.8	36.0	27.9	36.4	42.48
average													

All the years. the smallest values of the soil losses were registered in pasture: 2.1 t/ha in 2007, 0.2 t/ha in 2008 and 1.7 t/ha in 2009. The wheat had a better protection than maize seeded on the level curves: 3.76 t/ha vs 6.04 t/ha in 2007, 1.9 t/ha vs 2.7 t/ha in 2008 and 3.6 t/ha vs 5.7 t/ha in 2009. In comparison with the maize seeded from top valley, the soil losses from the variant seeded on the level curves represented 28% in 2007, 31.3% in 2008 and 46% in 2009. The biggest soil losses were registered in the variant with clean fallow: 41.38 t/ha in 2007, 20.3 t/ha in 2008 and 29.6 t/ha in 2009 (table 3).

Table 3 Soil losses registered in different crops, Oradea 2007-2009

	Soil losses					
Crop	t/ha	%	%	%	%	%
		2007				
1. Pasture	2.1	100	10	35	56	5
2. Maize from top to valley	21.32	1015	100	352	567	52
3. Maize on the level curves	6.04	288	28	100	161	15
4. Wheat	3.76	179	18	62	100	9
5. Clean fallow	41.38	1970	194	194	1100	100
		2008				
1. Pasture	0.2	100	2.3	7.4	10.5	1.0
2. Maize from top to valley	8.6	4300	100	319.1	45.3	42.4
3. Maize on the level curves	2.7	1300	31.3	100	142.1	13.3
4. Wheat	1.9	950	22.1	70.3	100	9.3
5. Clean fallow	20.3	6770	236.0	752	9.3	100
		2009				
1. Pasture	1.7	100	14	30	47	6
2. Maize from top to valley	12.3	723	100	215	342	42
3. Maize on the level curves	5.7	335	46	100	158	19
4. Wheat	3.6	212	63	63	100	12
5. Clean fallow	29.6	1741	519	519	822	100
	I	Average 2007	7-2009			
1. Pasture	1.33	100	9	27	43	4
2. Maize from top to valley	14.07	1057	100	292	456	46
3. Maize on the level curves	4.81	361	34	100	156	15
4. Wheat	3.08	231	21	64	100	10
5. Clean fallow	30.42	2287	216	632	988	100

The erosion determined the bigger differences between the yields obtained in the top of the hill in comparison with the base of the hill. As consequence in the maize seeded from top to valley the differences yields registered in the base in comparison with the top of the hill were of 46% in 2007, of 43% in 2008 and of 52% in 2009; in the variant with the maize seeded on the level curves the differences were of 16% in 2007, of 20% in 2008 and of 12% in 2009. In average on the studied period, the difference between the yield registered in the base of the hill in comparison with the top of the hill was of 45% in the maize seeded from top to valley and of 16% in the maize seeded on the level curves (table 4).

Table 4
The influence of the position on the hill in maize seeded from top to valley and in maize seeded on the level curves direction, Oradea 2007-2009

Variant	Position on the hill	Yield	Differ		Statistically	
v arrant	1 osition on the min	kg/ha	kg/ha	%	significant	
		2007	Kg/IIa	/0	Significant	
From top to valley	Тор	4720			Control	
rioin top to valley	Base	6610	1890	40	XXX	
	Dasc	LSD _{5%} 210	1890	40	XXX	
		LSD _{5%} 210 LSD _{1%} 390				
		LSD _{1%} 570 LSD _{0.1%} 610				
On the level curves	Тор	5680	_	_ 1	Control	
On the level curves	Base	6590	910	16	XXX	
	Buse	LSD _{5%} 170	710	10	AAA	
		LSD _{5%} 170 LSD _{1%} 290				
		LSD _{1%} 290 LSD _{0.1%} 574				
		2008				
From top to valley	Тор	3020	T _	_ [Control	
rioni top to vancy	_		1220	42		
	Base	4320	1320	43	XXX	
		LSD _{5%} 210				
		LSD _{1%} 390				
		LSD _{0.1%} 540	1			
On the level curves	Тор	4250	-	-	Control	
	Base	5110	860	20	XXX	
		LSD _{5%} 190				
		LSD _{1%} 330				
		LSD _{0.1%} 524				
F t t 11	Т	2009	1	1	Ct1	
From top to valley	Тор	4010 6100	2090	52	Control	
	Base		2090	32	XXX	
		LSD _{5%} 180 LSD _{1%} 310				
		LSD _{1%} 510 LSD _{0.1%} 580				
On the level curves	Тор	5370	-	-	Control	
On the level curves	Base	6020	650	12	XXX	
	Dasc		050	12	АЛА	
		LSD _{5%} 190				
		LSD _{1%} 330				
		LSD _{0.1%} 660				
		2007-2009	1	T T	0 . 1	
From top to valley	Тор	3920	-	-	Control	
	Base	5680	1760	145	XXX	
		LSD _{5%} 210		· ·		
		LSD _{1%} 450				
		LSD _{0.1%} 680				
On the level curves	Тор	5100	-	-	Control	
	Base	5906	806	16	XXX	
	Dasc	I SD ₅₀ 195	500	10	ΛΛΛ	

CONCLUSIONS

The researches carried out during 2007-2009 at the Agricultural Research and Development Station Oradea in the plots for flow check placed on the hill with 10% slope determined the following conclusions:

- The soil losses were determined every year in the all variants: clean fallow, maize seeded from top to valley, maize seeded on the level curves, wheat and pasture. The biggest soil losses were registered in the clean fallow followed by the maize seeded from top to valley, maize seeded on the level curves, wheat and pasture. The soil losses from clean fallow and maize seeded from top to valley are bigger than the tolerance limites.
- The seeding of the maize from top to valley determined the bigger differences between the yields obtained in the top of the hill in comparison with base of the hill comparing the yields obtained in the top of the hill and in the base of the hill from the variant with maize seeded on the level curves.
- In the variant with maize seeded on the level curves the yields were bigger than the yields obtained in the variant with maize seeded from top to valley both in the top and in the base of the hill.

The results researches emphasized the importance of the crop choice for the land with slope and the need of the maize seeding on the level curves.

REFERENCES

- 1. Brejea R., 2009, Tehnologii de protecție sau refacere a solurilor, Ed. Universității din Oradea
- Brejea R., C. Domuţa, 2009, Refacerea şi protecţia terenurilor din carierele de bauxită din munţii Pădurea Craiului, Ed. Universităţii din Oradea
- Răuță C., I. Niţu, M. Drăcea, M. Mihalache, 2000, Lucrările agropedoameliorative, Ed. Agris, Redacția Revistelor Agricole, București
- Domuţa C., 1999, Ameliorarea fertilității solurilor erodate pe terenurile în pantă din vestul țării. Cereale şi plante tehnice nr. 7/1999.
- Domuţa C., 2005, Agrotehnica terenurilor în pantă din nord vestul României. Editura Universității din Oradea, 96-117.
- 6. Domuţa C., 2006, Agrotehnica diferențiată. Editura Universității din Oradea
- Domuţa C., Şandor Maria, Bandici Gh., Sabău N.C., Ioana Borza, M. Cărbunar, Alina Samuel, Alina Stanciu, Ileana Ardelean, Brejea R., Domuţa Cr., 2006, Modifications of the soil structure under the erosion and crops influence in the condition from NorthWestern Romania, Buletin USAMV Cluj-Napoca 63, 447
- 8. Neamțu T., 1996, Ecologie, eroziune și agrotehnică antierozională. Ed. Ceres București, 17-28; 127-155
- 9. Pintilie C., Romoşan Şt., Pop L., Timariu Gh., Sebok P., Guş P., 1980, Agrotehnică și tehnică experimentală E.D.P. București
- Samuel A.D., Drăgan Bularda M., Domuţa C., 2006, The effect of green manure on enzymatic activities in a brown luvic soil. Studia Universitas Babeş – Bolyai, Biologia, L I, 83-93.
- 11. Sabău N.C., C. Domuța, O Berchez, 2002, Geneza, degradarea și poluarea solului Partea a II-a, Degradarea și poluarea solului, Ed. Universității Oradea