RESEARCHES CONCERNING THE WEEDS INFLUENCE ON WATER USE EFFICIENCY IN MAIZE FROM NORTH-WESTERN ROMANIA

Borza Ioana Maria*, Cornel Domuța, Maria Șandor, Cornelia Ciobanu, Alina Samuel, Cristian Domuța, Radu Brejea

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea, Romania, e-mail: borzaioanamaria@yahoo.com

Abstract

The paper presents the result regarding the weeds influence on water use efficiency in unirrigated and irrigated Turda super maize hybrid; the researches were carried out in the Agricultute Research and Development Station Oradea in the period 2001-2008.

Both unirrigated and irrigated variant there were the species: Amaranthus retroflexus, Echinochloa crus galli, Chenopodium album, Polygonum persicaria, Solanum nigrum, Convolvulus arvensis. The weeds determined very important yield losses and the decrease of the water use efficiency.

Key word: maize, water consumption, water use efficiency, irrigation water use efficiency, weeds

INTRODUCTION

Roots system of the weeds is more development than the plants crop and this think help them in the competition for nutrients and water (Budoi and Penescu, 1996; Guş et al, 1998; Bogdan I. et al, 2003; Domuţa C., 2006). Nutrient resources and especially water reserve of the soil in the agricultural year are limited and more consumers means smaller quantity of nutrients and especially of water for every plants and finally smaller yields (Domuţa C., 1995, 2005, Borza I., 2006). The paper presents the influence of the weeds from the maize crop on water use efficiency in the conditions of the moderate wet area of the Crişurilor Plain.

MATERIALS AND METHODS

The researches were carried out in Oradea during 2001-2008. The preluvosoil from the research field is characterized by the high hydrostability of the soil aggregates bigger than 0.25 mm (47.5%) on the 0-20 cm depth; bulk density is big (1.41 g/cm³); total porosity (46%) is median, field capacity (24.2%) and wilting point (9.2%) are median, too.

Chemical parameters of the preluvosoil indicate a low acid reaction (pH= 5.8), low humus content (1.75%), median content of total nitrogen (N=0.127%) very high content of the mobile phosphorus (150.8 ppm), median content of the mobile potassium (120.6 ppm), magnesium (254 ppm) and mangan (34%).

Two factors were studied: Factor A: weeds a_1 = without weeding and herbicides a_2 = herbicides and 2 manual weedings Factor B: water regime b_1 = unirrigated b_2 = irrigated The experiment was placed using the subdivised plots method. Number of repetition: 4: Experiment surface plot: 30 m^2 . Cultivar used: Turda super, Herbicide used: Sanolt combi 1.5 l/ha.

The annual rainfall registered during the research period were of 868.5 mm in 2001, 437.5 mm in 2002, 501.1 mm in 2003, 737.5 mm in 2004, 722 mm in 2005, in 2006, 684.7 mm in 2007 and 585.7 mm in 2008.

Soil moisture on 0-75 cm depth was maintained between easily available water content and field capacity by soil sample ten to ten days and using the irrigation. The irrigation rate used were of 480 m³/ha in 2001, of 2040 m³/ha in 2002, of 2680 m³/ha in 2003, of 1550 m³/ha in 2004, of 750 m³/ha in 2005, of 1160 m³/ha in 2006, of 2950 m³/ha in 2007 and of 3320 m³/ha in 2008.

Irrigation water used had a good quality (SAR = 0.52; CSR = -1.7). Irrigation method used was the sprinckler with adaptation for rectangular plots.

Total water consumption of the maize was determined by the soil water balance method using the balance depth of 0-150 cm (Grumeza N. et al, 1989)

Water use efficiency was calculated like report between the yield and total water consumption; irrigation water use efficiency was calculated like report between the yield gain determined by the irrigation and the irrigation rate used (Domuta C., 2008).

RESULTS AND DISSCUSIONS

The weeds from maize crop

Six species were met in the maize crop, 1 annual monocotiledoneous (*Echinochloa crus galli*) 4 annual dicotiledoneous (*Amaranthus retroflexus, Polygonum persicaria, Chenopodium album, Solanum nigrum*) and 1 perennial dicotiledoneous (*Convolvulus arvensis*. In irrigated conditions *Amaranthus retroflexus*, had the biggest presence (74 plants/m²); it was followed by *Echinochloa crus galli* (19 plants/m²), *Polygonum convolvulus* and *Chenopodium album* (11 plants/m² everyone), *Solanum nigrum* (5 plants/m²) and *Convolvulus arvensis* (1 plants/m²); total number of weeds: 121 plants/m².

The total number of weeds from unirrigated variants was smaller with 13% than irrigated variant. *Amaranthus retroflexus* (62 plants/m²), *Echinochloa crus gali* (15 plants/m²), *Chenopodium album* (11 plants/m²), *Polygonum persicaria* (9 plants/m²), *Solanum nigrum* (5 plants/m²) and *Convolvulus arvensis* (1 plant/m²). The biggest decrease of number of plants in comparison with irrigated variant was registered in *Echinochloa crus gali*, 21%. (table 1).

Table 1

The weeds from unitigated and inigated maize, oraded 2001 2000							
	Water	regime	Difference				
Specie	Unirrigated	Irrigated	mlanta/m ²	0/			
	plan	ts/m ²	plants/m	70			
1. Echinochloa crus gali	15	19	4	21			
2. Amaranthus retroflexus	62	74	12	16			
3. Solanum nigrum	5	5	-	-			
4. Polygonum persicaria	9	11	2	18			
5. Chenopodium album	11	11	-	-			
6. Convolvulus arvensis	4	1	-3	-75			
Total	106	121	15	14.2			

The weeds from unirrigated and irrigated maize, Oradea 2001-2008

Only in specie *Convolvulus arvensis*, the number of plants decreased in irrigated variant in comparison with unirrigated variant.

Weeds influence on yields maize

Every years, the weeds determined yield losses very significant statistically both in unirrigated and irrigated variant. The yield losses registered in comparison with the variant

herbicided and with 2 manual weeding in the unirrigated conditions were of 54.4% in 2001 of 85.9% in 2002, of 80.8% in 2003, of 57.1% in 2004, of 54% in 2005, of 56.9% in 2006, of 85.8% in 2007 and of 79.3% in 2008. In irrigated conditions the relative yield losses were smaller than in unirrigated conditions but the absolute yield losses are bigger (table 2)

In average on the studied period the weeds determined an yield losses of 54.53 q/ha (65.84%) in unirrigated conditions and of 71.13 q/ha (61.46%) in irrigated conditions.

Irrigation determined yield gains very significant both in the variant with weeds and in the variant with herbicide and 2 manual weeding every year. In average on the studied variants the yield relative difference is comparison with unirrigated variant were of 52.7% in 2001, of 82.3% in 2002, of 79.6% in 2003, of 50,1% in 2004, of 52.4% in 2005, of 44,8% in 2006, of 79,0% in 2007 and of 65.6% in 2008. In average of the studied period the difference was of 63.65%.

Table 2

	Weeds	influence on y	vields maize, C	Dradea 2001-2	008		
Water regime	We	eeding	Withou	t weeding	Average on regime		
	q/ha	%	q/ha	%			
The year 2001							
Unirrigated	111.9***	100	51.1 ^{Mt}	45.6	81.5 ^{Mt}		
Irrigated	120.1	100	58.6	48.8	89.4*		
Average	116.0 ^{Mt}	100	54.85°°°	47.3	-		
V	Vater regime	Weeds Wee	eds x Water regim	e Water	r regime x Weeds		
LSD 5%	5.97	6.10	8.62		8.45		
LSD 1%	10.98	9.24	13.06		13.97		
LSD 0,1%	24.32	14.84	20.98		26.52		
		The ye	ear 2002				
Unirrigated	65.3	100	9.2 ^{Mt}	14.1	37.25 ^{Mt}		
Irrigated	104.8	100	20.9	19.9	62.85***		
Average	85.05 ^{Mt}	100	15.05 ⁰⁰⁰	17.7	-		
1	Vater regime	Weeds Wee	ds x Water regime	e Water	r regime x Weeds		
LSD 5%	1.56	3.04	4.28		3.39		
LSD 1%	2.86	4.60	6.49	5.32			
LSD 0.1%	6.34	7.39	10.43	9.20			
		The ye	ear 2003				
Unirrigated	42.72***	100	8.21 ^{Mt}	19.2	25.47 ^{Mt}		
Irrigated	93.12	100	19.46	20.9	56.29***		
Average	67.92 ^{Mt}	100	13.84 ⁰⁰⁰	20.4	-		
Water regime		Weeds Wee	ds x Water regime	e Water	r regime x Weeds		
LSD 5%	1.32	2.28	4.18		3.30		
LSD 1%	2.75	3.96	6.12		5.26		
LSD 0.1%	5.98	6.42	9.86		9.16		
		The ye	ear 2004				
Unirrigated	72.56	100	31.20 ^{Mt}	42.9	51.88 ^{Mt}		
Irrigated	100.24	100	55.13	54.9	77.69***		
Average	86.4 ^{Mt}	100	43.16 ⁰⁰⁰	49.9	-		
N N	Vater regime	Weeds Wee	ds x Water regime	e Water	r regime x Weeds		
LSD 5%	1.75	2.76	4.26		3.12		
LSD 1%	3.28	4.52	6.42		5.32		
LSD 0.1%	6.46	7.13	10.22		9.58		
		The ye	ear 2005				
Unirrigated	113.6	100	52.26	46.0	82.93 ^{MI}		
Irrigated	130.2	100	63.80	49.0	97.0000		
Average	121.9 ^{MI}	100	58.03000	47.6	-		
1	Vater regime	Weeds Wee	ds x Water regime	e Water	regime x Weeds		
LSD 5%	3.6	1.9	3.1		2.9		
LSD 1%	5.2	5.2	4.9		5./		
LSD 0.1%	1.9	5.1	0.8		5.8		

The year 2006								
Unirrigated		114.2	10	00	49.22	43.1	81.71 ^{Mt}	
Irrigated		138.6	10	00	62.64	45.2	100.62***	
Average		126.4 ^{Mt}	10	00	55.93000	44.15	-	
	Wate	er regime	Weeds	Weeds	x Water regin	ne Water	regime x Weeds	
LSD 5%		4.1	2.7		3.9		3.8	
LSD 1%		5.9	4.2		5.2		4.6	
LSD 0.1%		9.8	6.8		7.9		6.4	
				The year	2007			
Unirrigated		67.2	1	00	9.6	14.2	38.4	
Irrigated		120.8	1	00	25.4	21.0	73.1	
Average		94.0	1	00	17.5	18.6	-	
	Wate	er regime	Weeds	Weeds	x Water regin	ne Water	regime x Weeds	
LSD 5%		3.1	2.1		2.9		2.4	
LSD 1%		5.3	3.3	3.3 4.8			3.9	
LSD 0.1%		7.9	5.8		6.7		5.6	
				The year	2008			
Unirrigated		75.2	10	0	15.60	20.7	45.40 ^{Mt}	
Irrigated		118.0	10	0	50.80	43.0	84.40***	
Average		96.60	10	0	33.20 ⁰⁰⁰	34.40	-	
	Wat	ter regime	Weeds	Wee	eds x Water reg	gime Wa	iter regime x Weeds	
LSD 5%		2.10	1.70		3.14		2.50	
LSD 1%		3.80	2.90		4.90		3.80	
LSD 0.1%		6.26	4.60		7.30		6.10	
			A	erage 20	01-2008			
Unirrigated		82.83	10	00	28.3 ^{Mt}	34.16	55.56 ^{Mt}	
Irrigated		115.73	10	00	44.6	38.54	80.16	
Average		99.28	10	00	36.45	36.35	-	
	Wat	ter regime	Weeds	Wee	eds x Water reg	gime Wa	iter regime x Weeds	
LSD 5%		2.94	2.82		4.29		3.73	
LSD 1%		5.0	4.49		6.49		5.73	
LSD 0.1%		9.37	7.26		10.02		9.79	

Weeds influence on total water consumption of the maize

In the weeded variant the values of the total water consumption of the maize crop were bigger than the values from the variant with herbicide and 2 weeding every year because the plants used a bigger quantity of water from soil water reserve and the maize harvesting moment, the soil moisture was smaller than the soil moisture from the variant with herbicide and 2 weeding. (table 3)

Both in the weeded variant and in the herbicided variant, the irrigation determined the increase of the total water consumption of the maize. The relative differences in comparison with unirrigated variant were of 6.1% and 2.9% in 2001, of 59.7% and 55.6% in 2002, of 69,5% and 67,8% in 2003, of 25.2% and 24.6% in 2004, of 11% and 11.1 % in 2005, of 23% in 2006, of 65% and 67% in 2007, of 87% and 83% in 2008. In the covering sources of the total water consumption of the maize crop, the irrigation represented 7% in the weeded variant and 9% in the herbicided variant in 2006, 36% and 37% in 2002, 44% and 46% in 2003, 22% and 24% in 2004, 11% and 12% in 2005, 17% in 2006, 40% in 2007, 47% and 46% in 2008. (table 3)

Table 3

Total v	water	consumption	n and th	ne covering	sources i	n weed	ling and	without	weeding	maize,
				Orade	a 2001-20)08				

		Σ (e + t)	The covering sources					
Variant	Water regime		0/	R _i -	R _f	P	v	Σn	1
		m ⁻ /na	%	m ³ /ha	%	m³/ha	%	m³/ha	%
			The year 20	001					
Without weeding	Unirrigated	5867	100	1036	18	4831	82	-	-
without weeding	Irrigated	6230	106,1	919	15	4831	78	480	7
Weeding	Unirrigated	5567	100	736	13	4831	87	-	-
weeding	Irrigated	5730	102,9	419	7	4831	84	480	9
]	The year 20	002		•		•	
Without weeding	Unirrigated	3538	100	644	18	2894	82	-	-
White weeding	Irrigated	5648	159,7	714	13	2894	51	2040	36
Weeding	Unirrigated	3473	100	579	17	2894	83	-	-
weeding	Irrigated	5402	155,6	468	9	2894	54	2040	37
]	The year 20)03			1		
Without weeding	Unirrigated	3610	100	1661	46	1949	54	-	-
without weeding	Irrigated	6120	169,5	1491	24	1949	32	2680	44
Weeding	Unirrigated	3450	100	1501	44	1949	56	-	-
weeding	Irrigated	5790	167,8	1161	20	1949	34	2680	46
]	The year 20	004		•		•	
Without weeding	Unirrigated	5432	100	1712	32	3720	68	-	-
while weeding	Irrigated	6800	125,2	1530	23	3720	55	1550	22
Weeding	Unirrigated	5248	100	1528	29	3720	71	-	-
weeding	Irrigated	6540	124,6	1270	19	3720	57	1550	24
]	The year 20	005		•		•	
Without weeding	Unirrigated	6073	100	1880	31	4193	69	-	-
while weeding	Irrigated	6703	110	1760	26	4193	63	750	11
Weeding	Unirrigated	5983	100	1790	30	4193	70	-	-
weeding	Irrigated	6613	111	1670	25	4193	63	750	12
	-]	The year 20)06				1	
Without weeding	Unirrigated	5490	100	1940	35	3550	65	-	-
in fallout in totaling	Irrigated	6760	123	2050	30	3550	53	1160	17
Weeding	Unirrigated	5372	100	1822	34	3550	66	-	-
	Irrigated	6615	123	1905	29	3550	54	1160	17
	1	[The year 20)07					
Without weeding	Unirrigated	4502	100	690	15	3812	85	-	-
	Irrigated	7442	165	680	9	3812	51	2950	40
Weeding	Unirrigated	4402	100	590	13	3812	87	-	-
, eeeing	Irrigated	7342	167	580	8	3812	52	2950	40
	T ==]	The year 20	008				1	
Without weeding	Unirrigated	3830	100	720	19	3110	81	-	-
	Irrigated	7150	187	720	10	3110	43	3320	47
Weeding	Unirrigated	3820	100	710	19	3110	81	-	-
	Irrigated	7020	183	590	8	3110	44	3320	48
		The a	verage 200	1 - 2008				r	r
Without weeding	Unirrigated	4793	100	1285	27	3507	73	-	-
	Irrigated	6607	138	1233	19	3507	53	1866	28
Weeding	Unirrigated	4664	100	1157	25	3507	75	-	-
	Irrigated	6381	137	1008	16	3507	55	1866	29

 $\Sigma (e + t) = water consumption;$ $P_v = rainfall during the vegetation period,$ $R_i - R_f = Water reserve (initial reserve - final reserve);$

 $\Sigma m = irrigation rate$

Weeds influence on water use efficiency

Both in unirrigated and irrigated conditions the weeds determined smaller values of the water use efficiency, the quantity of yield obtained for 1 m³ water used decreased. The values of the water use efficiency from unirrigated conditions in the weeded variant were smaller than the values from herbicided variant with 56.7% in 2001, with 86.2% in 2002, with 82.26% in 2003, with 58.7% in 2004, with 55% in 2005, with 58% in 2006, with 86.3% in 2007, with 79% in 2008. In irrigated conditions, the differences were of 55% in 2001, of 80.9% in 2002, of 80.75% in 2003, of 47.06% in 2004, of 52% in 2005, of 56% in 2006, of 79.3% in 2007, of 56% in 2008. (table 4)

Table 4

	······································	W	WUE					
Water regime	Variants	Kg/m ³	%	%				
The year 2001								
** * * . *	Weeding	2.01	100	-				
Unirrigated	Without weeding	0.87	43.3	-567				
	Weeding	2.09	100	-				
Irrigated	Without weeding	0.94	45.0	-55				
	The year	r 2002	,0					
** * *	Weeding	1.88	100	-				
Unirrigated	Without weeding	0.26	13.8	-86.2				
x +	Weeding	1.94	100	-				
Irrigated	Without weeding	0.37	19.1	-80.9				
	The year	r 2003						
	Weeding	1.24	100	-				
Unirrigated	Without weeding	0.22	17.74	-82.26				
~	Weeding	1.61	100	-				
Irrigated	Without weeding	0.31	19.25	-80.75				
	The year	r 2004	17.20	00.70				
** * * . *	Weeding	1.38	100	-				
Unirrigated	Without weeding	0.57	41.3	-58.7				
~	Weeding	1.53	100	-				
Irrigated	Without weeding	0.81	52.94	-47.06				
	The year	r 2005		.,				
xx · · · . 1	Weeding	1.90	100	-				
Unirrigated	Without weeding	0.86	45	-55				
x +	Weeding	1.97	100	-				
Irrigated	Without weeding	0.95	48	-52				
	The year	r 2006	-	-				
xx · · · · 1	Weeding	2.13	100	-				
Unirrigated	Without weeding	0.90	42	-58				
T ' / 1	Weeding	2.09	100	-				
Irrigated	Without weeding	0.93	44	-56				
	The year	r 2007						
Unimigated	Weeding	1.53	100	-				
Unirrigated	Without weeding	0.21	13.7	-86.3				
T ' / 1	Weeding	1.64	100	-				
Irrigated	Without weeding	0.34	20.7	-79.3				
	The year	2008						
Unirrigated	Weeding	1.97	100	-				
0	Without weeding	0.40	21	-79				
Irrigated	Weeding	1.63	100	-				
	without weeding	01-2008	44	-30				
	Weeding	1.75	100	-				
Unirrigated	Without weeding	0.54	31	-69				
Imigated	Weeding	1.81	100	-				
Irrigated	Without weeding	0.67	37	-63				

Weeding influence on water use efficiency (WUE) in maize, Oradea 2001-2008

Weeds influence on irrigation water use efficiency

Weeds determined the decrease of the yield gain obtained for 1 m^3 of irrigation water used. The differences in comparison with weeding variant were of 8.8% in 2001, of 70.6% in 2002, of 77.6% in 2003, of 13.7% in 2004, of 30.3% in 2005, of 49.1% in 2006, of 70.4% in 2007, of 18% in 2008 (table 5)

¥7	IW	UE		Difference				
Variant	Kg gain/m ³ %		%	Kg gain/m ³	%			
The year 2001								
Weeding	1.71	1	.00	-	-			
Without weeding	1.56	9	1.2	-0.15	-8.8			
The year 2002								
Weeding	1.94	1	.00	-	-			
Without weeding	0.57	2	9.4	-1.37	-70.6			
	T	he year 2003						
Weeding	1.88	1	.00	-	-			
Without weeding	0.42	22	2.34	-1.46	-77.66			
	Т	he year 2004						
Weeding	1.79 100		.00	-	-			
Without weeding	1.54	1.54 86.3		-0.25	-13.7			
The year 2005								
Weeding	2.21	1	00	-	-			
Without weeding	1.54 69.7		9.7	-0.67	-30.3			
The year 2006								
Weeding	2.10	100		-	-			
Without weeding	1.07	5	0.9	-1.03	- 49.1			
	Т	he year 2007						
Weeding	1.82	10	0	-	-			
Without weeding	0.54	29	.6	-1.28	- 70.4			
The year 2008								
Weeding	1.29		100	-	-			
Without weeding	1.06		82	-0.23	-18			
	Avera	age 2001 - 2	008	-				
Weeding	1.84		100	-	-			
Without weeding	1.04		56.5	-0.8	-43.5			

Weeding influence on irrigation water use efficiency (IWUE) in maize, Oradea 2001-2008

Table 5

CONCLUSIONS

The researches were carried out during 2001-2008 in Oradea and show the presence of the weeds in the maize crop from variant without weeding and herbicides: 106 plants/m² in unirrigated conditions and 121 plants/m² in irrigated variant. Both unirrigated and irrigated variant there were the species: *Amaranthus retroflexus, Echinochloa crus galli, Chenopodium album, Polygonum persicaria, Solanum nigrum, Convolvulus arvensis.* In irrigated conditions, number of *Convolvulus arvensis* decreased only (1 plants/m² vs. 4 plants/m²).

Weeds determined yield losses very significant statistically both unirrigated and irrigated variant, the relative differences in comparison with the weeding and herbicided variant were between 54% and 85.9% in unirrigated and between 45.1% and 80.1% in irrigated conditions.

The values of the total water consumption from the weeded variants had the bigger values than herbicided and weeding variants because the plants used bigger quantity of water from soil reserve. Irrigation represented between 7% and 47% from covering sources of the maize crop.

Weeds determined smaller values of the water use efficiency, the quantity of yield obtained using 1 m^3 of water was smaller in comparison with herbicided and weeding variant; the relative differences were between 56.7% and 86.3% in unirrigated conditions and between 47.06% and 80.9% in irrigated conditions.

Irrigation water use efficiency had smaller value in the variant with weeds, in comparison with herbicided and weeding variant, the differences were between 8.8% and 77.6%.

The researches sustain the need of the good protection against the weeds both in unirrigated and irrigated conditions because the weeds determined very important yield losses and the decrease of the water use efficiency.

REFERENCES

- Berca M., 2004 Managementul integrat al buruienilor. Ed. Ceres București p. 46-52 1.
- Bogdan I., Guş P., Rusu T., 2003 Agrotehnica diferențiată. Ed. Risoprint Cluj -Napoca p. 221-233 2
- Borza Ioana Maria, 2006 Cercetări privind influența unor măsuri fitotehnice asupra valorificării apei de 3. către cultura porumbului în condițiile Câmpiei Crișurilor. Teză de doctorat USAMV Cluj- Napoca p.171-187
- Borza Ioana Maria, 2007 Valorificarea apei de către cultura porumbului din Câmpia Crișurilor. Editura 4. Universității Oradea, p. 176-192
- Budoi Gh., Penescu A., 1996 Agrotehnica Ed. Ceres București p. 85-98 5
- Domuța C., 1995 Contribuții la stabilirea consumului de apă al principalelor culturi din Câmpia Crișurilor. 6. Teză de doctorat ASAS "Gheorghe Ionescu Şişeşti" Bucureşti, p. 115-181
- Domuța C., 2005 Irigarea culturilor, Editura Universității din Oradea, p. 96-100 7
- 8.
- Domuța C., 2006 Agrotehnica diferențiată, Editura Universității din Oradea, p. 142-147 Domuța C., 2008 Practicum de agrotehnică, Editura Universității din Oradea, p. 125-128 9.
- 10. Guș P. et al., 1998 Agrotehnica. Ed. Risoprint Cluj-Napoca, p. 210-370