DISCIPLINE DESCRIPTION

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	FORESTRY AND FORESTRY ENGINEERING
1.4 Field of study	FORESTRY
1.5 Cycle of study	LICENSE
1.6 Study programme/Qualification	FORESTRY / FOREST ENGINEERS

2. Information on the discipline

2.1 Name of discipline	GENETICS	
2.2 Course holder	CONF. DR. LAZĂR ANDRA NICOLETA	
2.3 Seminar/Laboratory/Project holder	CONF. DR. LAZĂR ANDRA NICOLETA	
2.4 Year of study III 2.5 Semester	V 2.6 Type of evaluation E 2.7 Regime of discipline DF	
(C) Compulsory: (O) Optional: (E) Election		

(C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

3.1 Number of hours per week out of which:	2	3.2. course	1	3.3. laboraty/project	1
3.4 Total hours in the curriculum out of which:	28	3.5. course	14	3.6. laboratory/project	14
Time allotment	Time allotment				hours
Study assisted by manual, course support, biblio	graphy	and notes			25
Additional documentation in the library/ on spec	ialised	electronic pla	tforms	and in the field	20
Preparation of seminars/laboratories/ topics/reports, portfolios and essays				10	
Tutorship			10		
Examinations			7		
Other activities			-		
3.7 Total hours of individual study 72					
3.9 Total hours per semester 28					
3.10 Number of credits 4					

4. Prerequisites (where appropriate)

4.1 curriculum	Botany, Plant Physiology
4.2 competences	Microbiology, Biochemistry

5. Conditions (where appropriate)

5.1. related to course	Projector
5.2. related to seminar	Microscopes, laboratory kits, field trip

6. S	Spec	cific competences acquired
Professional	competences	 C1. Background sustainable management of forests, of hunting, conservation and biodiversity salmonids C2. Develop and implement technical and economic projects on forestry production process control, hunting and salmonids C4. Application of protection, improvement and increase in productivity of forest ecosystems
Transversal	competences	CT1. Developing and following a schedule and achieve their tasks with professionalism and rigor

7. Objectives of discipline (coming from the specific competences acquired)

· · · · · · · · · · · · · · · · · · ·				
7.1 General objective	Description of the theoretical and practical aspects of genetic			
	processes, characteristic of the hunting, salmonids and biodiversity			
	Develop innovative designs, adapted to the concrete economic and			
	ecological sustainable management of forests, hunting and			
	conservation of biodiversity.			
	The course aims to give students basic knowledge of general genetics,			
	with examples, if possible, in plant genetics of the species subject to			
	improvement and production of plus trees of species of high biological			
	value and high performance rays productive.			
	It makes the presentation of hereditary phenomena and variability are			
	entries in quantitative genetics, population genetics and ecological			
	genetics and teach basic information on the use of modern			
	biotechnology, including genetic engineering and tree improvement.			
7.2 Specific objectives	es Acquiring practical and theoretical knowledge to students, necessary			
	for the implementation of modern technologies of reproduction,			
	growth, improvement and operation of various tree species existing in			
	our country.			
	Selection, improvement, production and exploitation of biological			
	material reproduction.			

8. Content*/

8.1 Course	Methods of teaching	No. of
		hours/Re
		marks
1. Genetics - the science of heredity and variability of	Modern lecture for student in	1
living organisms (definition, the subject, purpose and	discussion followed by	
importance of genetics, genetics branches and research	explanations that clarify the	
methods used short history)	phenomena presented	
	Active and participative methods	
2.Mendelian laws of heredity (Mono-hybridism and	Idem	1
gametes purity law, the law of segregation and		
independent Di-hybridism pairs of characters)		
3.Other types of segregation (partial dominant, over	Idem	1
dominant, co-dominant, pleiotropic genes, lethal gene		
complementarity, interaction between genes, epistasis,		
polygenic, transgression)		
4.Heredity quantitative and qualitative characters	Idem	1
(heredity characteristics quantitative characters)		
5.Cytological bases of heredity (organization of	Idem	1
eukaryotic cell, chromosomes of eukaryotic organisms,		
eukaryotic chromosome morphology, chemical		
composition, characteristics eukaryotic karyotype)		
6.Cellular Reproduction (mitotic cell cycle and genetic	Idem	1
significance, meiotic cell cycle and genetic significance,		
genetic recombination in higher plants, genetic and		
biological significance)		
7. Chromosomal theory of heredity (genes on	Idem	1
chromosomes linear placement, the phenomenon of		
gene linkage (linkage) gene recombination between		
chromosomes pair (crossing-over) - exchange of genes,		
factors that alter the frequency of crossing-over,		
chromosome maps)		

8 Heredity of sexual characteristics (types of	Idem	1
determinism chromosomal gender type Drosonhila		-
Abraras type type of determinism of the hanloid male		
gender other factors influencing the genetic		
determinism of conden soy linkage nhonomonon)		
Q N (i l l l l l l l l l l l l l l l l l l	Liam	1
9. Notions of molecular genetics (genetic nucleic acids	Idem	1
and their role, the chemical structure of nucleic acids,		
deoxyribonucleic acid (DNA), ribonucleic acid (RNA),		
genetic code features of the genetic code, the functions		
of the genetic material and protein synthesis).		
10. Gene structure and function (gene functions and the	Idem	1
central dogma of genetics, genes overlapped jumping		
genes). Heredity extra-nuclear (extra-nuclear heredity		
peculiarities and ways of pointing manifestation of		
extra-chromosomal heredity male sterility and fertility		
restoration)		
11 Denne duction of even plants (name ductive systems)	Idem	1
11. Reproduction of crop plants (reproductive systems	Idem	1
and their genetic implications). Variability (units)		
diversity of the living world classification, classification		
units of intraspecific genetic diversity, types and levels		
of genetic variability causes genetic variability).		
12. Introduction to quantitative genetics (genetic effects	Idem	1
distribution and quantitative characters, heredity		
quantitative characters, the properties of a population in		
relation to quantitative characters, relations between		
genetic and environmental influences determine the		
expression of phenotype genotype r environment		
interaction stability staple characters - quality)		
12 Elements of nopulation genetics (Mondelian genetic	Idem	1
15. Elements of populations genetics (Mendenan genetic	idem	1
structure of populations, genetic balance, equilibrium		
modifiers genetic factors).	T 1	
14. Introduction to Ecological genetics (basic concepts	Idem	1
of ecological genetics, genetic system, reproductive		
system and ecological niche, adaptation, variability in		
relation to environmental gradients, Co-evolution in		
ecosystem).		
Bibliography:		
1. Ceapoiu N. 1976 "Genetica și evoluția populat	țiilor biologice" Editura Academie	i Române,
București		
2. Crăciun T. 1970 "Genetica" Editura Didactică	și Pedagogică, București;	
3. Daniela Neagos, 2013 "Genetica umană. Supo	rt de curs" Editura All, București	
4. Drăcea I. 1973 "Genetica" Editura Didactică ș	i Pedagogică, București;	
5. Enescu V. 1985 "Genetica ecologică" Editura	Ceres, București;	
6. Pamfil C. 1974 "Genetica" Editura Didactică ș	și Pedagogică, București;	
7. Savatti M., Andra Ienciu 2003 "Genetica agro-	-silvică" Editura AcademicPres, Cl	uj-Napoca;
8. Savatti M., Andra Ienciu, Savatti M. jr. 20	004 "Genetica" Editura Academi	cPres, Cluj-
Napoca.		
8.3. Laboratory	Methods of teaching	No. of
		hours/
		Remarks
1.Usual laboratory methods in cytogenetics. Usual	Exposure, talks with students	1
laboratory techniques in cytogenetics	working at the laboratory	
	(interactive activities). Field	

	trip	
2. Micrometer and microscopic elements. Highlighting microscope hereditary component functions	Idem	1
3. Nucleic acids - chemical substrate of heredity. Phenomena of mitosis and meiosis genetic nature	Idem	1
4. Cytological methods for highlighting chromosomes in plants. The study of chromosomes in plants. Cell division.	Idem	2
5. Study of eucromatins and heterochromatin. Impact of karyotype plants.	Idem	1
6. Crosses between individuals that differ by a single character (mono-hybridising). Crosses between individuals who differ by a second or more characters (mono-hybridising and poli-hybridising)	Idem	1
7.Characters with polygenic control	Idem	1
8.Linkage. Crossing-over	Idem	1
9. The genetic structure of populations. Hardy-Weinberg law. Genetic parameters of variability.	Idem	1
10.Variance analysis. Heritability coefficient (h2). Evaluation of genetic gain (DG).	Idem	2
11.Genotype correlations due to the environment. Phenotypic correlations due to the environment.	Idem	1
12.Organ and cell cultures " <i>in vitro</i> ". Tissue culture " <i>in vitro</i> "	Idem	1

Bibliography:

- 1. Ceapoiu N. 1976 "Genetica și evoluția populațiilor biologice" Editura Academiei Române, București
- 2. Crăciun T. 1970 "Genetica" Editura Didactică și Pedagogică, București;
- 3. Drăcea I. 1973 "Genetica" Editura Didactică și Pedagogică, București;
- 4. Enescu V. 1985 "Genetica ecologică" Editura Ceres, București;
- 5. Pamfil C. 1974 "Genetica" Editura Didactică și Pedagogică, București;
- 6. Savatti M., Andra Ienciu 2003 "Genetica agro-silvică" Editura AcademicPres, Cluj-Napoca;
- 7. Savatti M., Andra Ienciu, Savatti M. jr. 2004 "Genetica" Editura AcademicPres, Cluj-Napoca.
- 8. Wells S. 2009 "Omul. O aventura genetică" Editura CD Press, București

* The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

• By learning the theoretical concepts and practical aspects included in discipline approach Genetics, students acquire knowledge that consistent with partial competencies required for possible occupations provided in Grid 1 - NRQHE

• The course curriculum exists also, in universities and faculties in Romania.

<u>10. Evaluatio</u>n

Type of activity	of activity 10.1 Evaluation criteria 10.2 Evaluation		10.3 Share in	
		methods	the final grade	
10.4 Course	Exam scheduled session	Written exam	90%	
10.6. Laboratory	Evaluation of laboratory work is under	Test prestical test	100/	
	continuous evaluation.	Test, practical test	1070	
10.8 Minimum standard of performance				
Knowledge and learning the basics correct encountered in genetic variability and understanding				
of hereditary phenomena, acquiring basic information on the use of modern biotechnology,				

including genetic engineering in plant breeding horticultural

Date of completion

Signature of course holder

Signature of seminar holder

17.09.2020

.....

Conf. univ. dr. biol. Lazăr Andra Nicoleta

Şef lucrări dr.ing. Burescu Laviniu

Date of approval in the department

Signature of the Head of Department

Prof. univ. dr. ing. Timofte Adrian Ioan

.....

Dean signature Prof. dr. ing. Chereji Ioan

.....

** - Name, first name, academic degree and contact details (e-mail, web page, etc.) will be specified. Conf. dr. Lazăr Andra Nicoleta, <u>ienciuandra@yahoo.com</u>