SUBJECT OUTLINE

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA			
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION			
1.3 Department	AGRICULTURE, HORTICULTURE			
1.4 Field of study	AGRONOMY			
1.5 Cycle of study	BACHELOR			
1.6 Study programme/Qualification	AGRICULTURE / ENGINEER			

2. Information on the discipline

2.1 Name of discipl	ine	Enc	ergetic Basis and Agr	icul	tural Machinery I	
2.2 Course holder		PhI	D. eng. DONCA Ghe	orgh	e	
2.3 Seminar/Labora	tory/Project	holder PhI	D. eng. DONCA Ghe	orgh	e	
2.4 Year of study	I 2.5 Sen	mester I	2.6 Type of evaluation	Е	2.7 Regime of discipline	C

⁽C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

3. I otal estimate time (nours per	SCII	lester of didactic activitie	s)		
3.1 Number of hours per week	4	out of which: 3.2 course	2	out of which 3.3	2
				seminar/laboratory/project	
3.4 Total hours in the curriculum	56	out of which: 3.5 course	28	out of which 3.6	28
				seminar/laboratory/project	
Time allotment					hours
Study assisted by manual, course support, bibliography and notes					14
Additional documentation in the library/ on specialised electronic platforms and in the field					7
Preparation of seminars/laboratories/ topics/reports, portfolios and essays					20
Tutorship				1	
Examinations				2	
Other activities				0	

3.7 Total hours of individual study	44
3.9 Total hours per semester	100
3.10 Number of credits	4

4. Prerequisites (where appropriate)

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·
4.1 curriculum	
4.2 competences	

5. Conditions (where appropriate)

5.1. related to course	
5.2. related to seminar/laboratory/ project	Compliance with Labour Safety and Emergency Standards in
	laboratory.

C1.1. Description of the scientific, theoretical and practical fundamentals underpinning the development and application of sustainable agricultural production technologies. C1.3. Apply appropriate methods, techniques and procedures for customizing and optimizing sustainable agricultural production process technologies. C1.4. Qualitative and quantitative analysis of the effects of the technologies used (physico-temical analyses of the obtained productions, physical, chemical and biological analyses on the environmental components that may be affected by applied agricultural technologies, the use of specific methods for assessing the impact of applied technologies on biodiversity). CT1. Elaboration and observance of a work program and accomplishment of its own attributions with professionalism and rigor.

7. Objectives of discipline (coming from the specific competences acquired)

	~				
7.1	General objective	The course aims to familiarize students with the issues of the energy base and			
		agricultural machinery. The first part summarizes the basics of technical			
		engineering (mechanical and electrical engineering). Students have the			
		opportunity to familiarize themselves with the main types of tractors and			
		machines, the practical skills of construction, sizing, operation and possibilities			
		of their construction, maintenance, operation and repair.			
7.2	2 Specific objectives	Laboratory work is designed to provide future agronomist engineers practical			
		skills in design, development, research, exploitation, repair and maintenance of			
		technical equipment in agriculture. The contents of the presented works are based			
		on the need to deepen the problems presented in the course. Students have the			
		opportunity to identify component parts and to understand the operation of			
		machines and machines, to familiarize themselves with the modern means of			
		measuring their parameters. They will understand their complexity and			
		usefulness and treat them as such. Knowledge is useful in forming skills to			
		address specific production problems faced by one skilled in the art.			

8. Content*/

8.1 Course	Methods of	No. of hours
o.1 Course	teaching	/ Remarks

1. Introduction. 1.1. General considerations. 1.2. Recapitulative drawings	Oral presentation,	
of technical drawing. 1.3. Materials used in the construction and	demonstration and	2
operation of machinery, equipment and installations in agriculture.	discussions	
1.4. Manufacture of parts for use in the construction of machinery,		
equipment and installations. 1.5. Machine parts used in the construction	Idem	2
of machinery, equipment and installations		
2. Energy sources used in agricultural units. 2.1. Internal combustion		
engines. 2.1.1. Classification. Theoretical cycle. Power indices.	Idem	2
Reduction of pollution.		
2.1.2. Components of internal combustion engines.	Idem	2
2.2. Other sources of classical energy (thermal energy, mechanical) used		
in agriculture. 2.3. Renewable energy sources (wind, solar, geothermal,	Idem	2
hydropower and biomass).		
2.4. Electricity utilization in machinery and machinery (power		
generation, transport and distribution, electrical equipment and	Idem	2
machines). 2.5. Automation used in agricultural units. 2.6. Hydraulic		2
drive systems used in agriculture		
3. Machinery and facilities for water supply and microclimate. 3.1.		
Installations for water supply. 3.2. Lighting systems. 3.3. Heating	Idem	2
installations. 3.4. Ventilation installations. 3.5. Refrigeration installations		
4. Tractors. 4.1. Classification of tractors. 4.2. The main parts of the	Idem	2
tractors. 4.3. Transmissions used on tractors. 4.4. Tractor clutch	Idelli	2
4.5. Tractor gearboxes. 4.6. Rear axle of tractors. 4.7. Work equipment	Idem	2
4.8. Rolling system, 4.9. Braking system. 4.10. Steering mechanism.	Idem	2
4.11. The tractor's electrical installation	Idelli	2
5. Machinery for transporting and handling products used in agricultural	Idem	2
farms. 5.1. Trailed and self-propelled transport equipment	Idelli	2
5.2. Machines and installations for loading - unloading operations	Idem	2
5.3. Transporters with flexible traction. 5.4. Conveyors without flexible	Idem	2
traction	IUCIII	<u> </u>
6. Machinery and equipment for land improvement.	Idem	2
D'11' 1		

Bibliography

- 1. Blaga V. Motoare pentru automobile și tractoare, Editura Universitătii din Oradea, 2007
- 2. Blaga V. Baza energetică pentru agricultură, Editura Universității din Oradea, 2006
- 3. Ciocîrlan A., Constantin M. Asamblarea, întreținerea și repararea mașinilor și instalațiilor, Editura ALL Educational, București, 2002
- 4. Donca Gh. Baza energetică pentru agricultură, Editura Universității din Oradea, 2012
- 5. Donca Gh. *Baza energetică și mașini agricole*, Îndrumător de laborator, Editura Universității din Oradea, 2013
- 6. Donca Gh. *Mic dicționar de inginerie tehnică pentru domeniul agrozootehnic și agroturistic*, Editura Universității din Oradea, 2012
- 7. Donca Gh. *Bazele utilajelor și instalațiilor pentru alimentația publică și turism*, Editura Universității din Oradea, 2009
- 8. Donca Gh. Mentenanța utilajelor și instalațiilor agroalimentare, Editura Universității din Oradea, 2011
- 9. Donca Gh. *Utilaje și instalații pentru alimentația publică și agroturism*, Editura Universității din Oradea, 2010
- 10. Donca Gh. Mașini și instalații zootehnice, Editura Universității din Oradea, 2015
- 11. Dumitru M. Tractoare agricole, Editura Alma Mater, Sibiu, 2006
- 12. Naghiu Al. Baza energetică pentru agricultură și silvicultură, Editura Risoprint, Cluj-Napoca, 2008

8.2 Seminar		
8.3 Laboratory	Methods of	No. of hours
	teaching	/ Remarks
1. Training on work safety and emergency rules.	Demonstration,	
1. Basics of machine, machine and plant study. Measuring the size of the	experimentation,	
parts	discussions,	2
	problem-solving	
	and teamwork	
2. Apparatus for measuring electrical and non-electric parameters	idem	2
3. Study of chain transmissions, belt and gear wheels	idem	2
4. Basic elements of electrical drives	idem	2
5. The study of electric machines. Short-circuit three-phase asynchronous	idem	2
motor		
6. Drawing of characteristic internal curves to axial and centrifugal fans	idem	2
7. Component of hydrostatic drive systems. Analysis of pressure	idem	2
regulating equipment		
8. Organism of internal combustion piston engines, gas turbines and compressors	idem	2
9. Thermal balances of four-stroke diesel engines	idem	2
10. Determination of the speed characteristics of internal combustion piston engines	idem	2
11. Determination of constructive and functional parameters of tractors	idem	2
12. Transmission and braking study of tractors	idem	2
13. Parameters of tractors working equipment	idem	2
14. Determination of constructive and functional parameters in worm and	idem	2
spiromatic conveyors	iueiii	۷
8.4 Project		
	•	

Bibliography

- 1. Blaga V. Motoare pentru automobile și tractoare, Editura Universității din Oradea, 2007
- 2. Blaga V. Baza energetică pentru agricultură, Editura Universității din Oradea, 2006
- 3. Ciocîrlan A., Constantin M. Asamblarea, întreținerea și repararea mașinilor și instalațiilor, Editura ALL Educational, București, 2002
- 4. Donca Gh. Baza energetică și mașini agricole, Îndrumător de laborator, Editura Universității din Oradea, 2013
- 5. Donca Gh. Baza energetică pentru agricultură, Editura Universității din Oradea, 2012
- 6. Donca Gh. Mic dicționar de inginerie tehnică pentru domeniul agrozootehnic și agroturistic, Editura Universității din Oradea, 2012
- 7. Donca Gh. Mașini și instalații zootehnice, Îndrumător lucrări practice de laborator, Editura Universității din Oradea, 2017
- 8. Donca Gh. Utilaje și instalații pentru alimentația publică și agroturism, Îndrumător pentru lucrări de laborator, Editura Universității din Oradea, 2013
- 9. Dumitru M. Tractoare agricole, Editura Alma Mater, Sibiu, 2006
- 10. Naghiu Al. Baza energetică pentru agricultură și silvicultură, Editura Risoprint, Cluj-Napoca, 2008
- 11. Năstăsoiu M. Tractoare : determinarea performanțelor de tracțiune și economice, Editura Universității Transilvania, Brașov, 2004
- 12. Tonea C. ș.a. Baza energetică pentru agricultură, Îndrumător de lucrări practice, Editura Agroprint, Timișoara, 2004

* The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

The content of the discipline is adapted and satisfies the requirements imposed by the labour market, being agreed by social partners, professional associations and employers in the field of the bachelor's program. The content of the discipline is found in the curriculum of the agricultural specialization and other academic centres in Romania that have accredited this specialization, so knowing the basic notions is a stringent requirement of the employers in the field.

10. Evaluation

10. Livaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in	
			the final grade	
10.4 Course	For the pass mark (5), all subjects	Exam written 2 hours (It consists of	60%	
	must treated to the minimum	4 subjects from the course. For the		
	standards. Larger notes are in	passing of the exam, each subject		
	proportion to the correctness of	should treated for minimum 5.).		
	the fixes.			
10.5 Seminar				
10.6 Laboratory	All laboratory work must done.	Monitoring the activity and the	40%	
	Recovering only an outstanding	results obtained.		
	laboratory (in the last week of the			
	semester) allowed.			
10.7 Project				
10.8 Minimum standard of performance				
Elaborate and apply economically efficient production technology with positive ecological and social				

Elaborate and apply economically efficient production technology with positive ecological and social impact depending on specific ecological conditions.

Date of completion	Signature of course holder	Signature of seminar
		laboratory/project holder
26.09.2020	1. PhD. eng. DONCA Gheorghe	1. PhD. eng. DONCA Gheorghe
	donca.gheorghe@gmail.com	donca.gheorghe@gmail.com

Date of approval in the department

Signature of the Head of Department Prof. PhD. eng. BANDICI Gheorghe Emil

Dean signature Prof. PhD. eng. CHEREJI	Ioar