ASPECTS RELATING TO TECHNOLOGY TOPOGRAPHIC DETAILS G.N.S.S. POSITIONING SYSTEM G.P.S. IN THE FORESTRY MASSIVE

Crainic Ghiță Cristian*, Bodog Marinela*, Sicoe Silviu**, Bungău Delia**, Druță Nicu**, Ardelean Radu**, Bar Ionut**

* Lecturer PhD Eng. - University of Oradea, Faculty of Environmental Protection, Department of Forestry and Forest Engineering; 26 Gen. Magheru St., 410048 Oradea, Romania, e-mail: gccrainicl@yahoo.com

**Student, University of Oradea, Faculty of Environmental Protection, Department of Forestry and Forest Engineering;

Abstract

Determining the spatial position of the various details (characteristic points) topographic now can be done using modern technologies related work sector terrestrial measurements. As a result, these activities can be used total station, G.P.S. system, laser scanners, digital cartographic products (ortho, digital maps) georeferenced and combinations thereof.

Use of G.P.S. system for positioning of details in the forestry sector has a number of features, having in view the specific working conditions in areas with forest vegetation and that appropriate technical characteristics of satellite technologies work.

Different activities of the forestry sector involve determining the coordinates of specific points of interest applied to production activities and/or research to achieve the objectives related to current and future forestry strategy.

The case study was conducted in the County Forest Administration Bihor, Forest District Săcuieni, Production Unit Sîniob, June-July 2015 with the objective like to determine the space of a point to infill positioning court related of forest cottage and three permanent sample plots, which examines possible new methods of seed regeneration of oak trees in the national forest.

For the realization of these study case were used four receivers G.P.S. Trimble R3, with a certain frequency and programs related to data collection and processing. As a result, the static method used to quickly positioning satellite, and data processing parameters recorded were used local (zonal) transformation obtained in earlier studies for this area.

Based on the final results (the coordinates offset in the national reference) were drawn digitally positioned building plan (yard of forest cottage) and the three experimental devices. It has also been materialized sketch, digital point of thickening network of support and the plot that was materialized with a terminal type FENO.

The characteristic point positioned spatially related analyzed details of the forest can be identified with high efficiency and that for various reasons they are not materialized on the ground, using for this purpose receivers G.P.S. with simple and/or dual frequency, as necessary and appropriate positioning methods respectively.

Key words: terrestrial measurements, total station, G.P.S. system, laser scanners, digital cartographic products.

INTRODUCTION

Determining the spatial position of various informations (characteristic points), topographic now can be done using modern technologies related work sector terrestrial measurements (Adam et. al., 2004).

Therefore, these activities can use total stations, GPS systems, laser scanners, digital cartographic products (ortho, digital maps) georeferenced (Crainic, 2011, Sabău, 2010, Sabău, Crainic, 2006) and combinations thereof.

Using GPS for positioning the details in the forestry sector has a number of features, having you residence specific working conditions in areas with forest vegetation and that appropriate technical characteristics of satellite technologies work (Crainic, Damian, 2011).

Various activities of the forestry sector is to determine the coordinates of specific points of interest applied to production activities and/or research to achieve the objectives related to current and future forestry strategy (Bodog, Crainic, 2016).

MATERIAL AND METHOD

The case study was done in Bihor Forest Department, Forest District Săcuieni, Production Units I Sîniob, during June-July 2016.

Photo.1- Location of the study case (http://saniob-bh.pe-harta.ro/)

The case study has three main objectives:

-determination of the thickening space of a geodesic network point that is located inside the massive forest (stand);

-positioning a building, represented by the court of forest cottage named Cabana which is located in the stand of the wedge (u.a.) 39;

-the positioning of three permanent sample surfaces in the parcel array (u.a.) 40, where experiments, researches and studies are carried out concerning the regeneration of oak stands.

The research methods used for the case study are represented by the bibliographic documentation, the observation on the itinerary, the observation in the stationary, the experiment, the simulation, the comparison, the recording on digital support.

To achieve the proposed objectives, appropriate logistics, consisting of five G.P.S. TRIMBLE R3 used for satellite positioning, Trimble Digital Fieldbook program for recording satellite data (raw data), Trimble Total Control program for transferring, checking and processing of recorded data. Planimetric reporting of positioning points was performed with the MapSys program.

The points in the geodetic network (support network) that were used to achieve the objectives proposed in the case study were positioned with the GNSS technology, the GPS system, static method (Chitea G., Vorovenci I., Mihăilă M., Chitea C.G., 2011; Păunescu C., Mocanu V., Dimitriu S.G., 2006), on the occasion of complex studies carried out in the period 2000-2011 in this area, to analyze the possibilities of modernizing the topo-geodesic works in the forestry sector. (Crainic, 2011).

Photo 2 - TRIMBLE R3 receivers used for spatial positioning of details the spatial positioning of the new points was made with the G.P.S. by the static method.

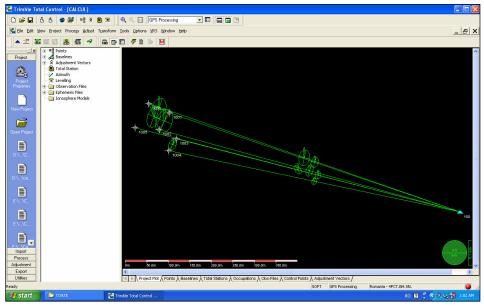


Photo.3 - Trimble Total Control interface

Points that have been spatially positioned with G.N.S.S. the G.P.S. (Crainic, 2011) were graphically reported with the MapSys program (Marton, 2007).

ile Edit Format V	iew Help			
Nr.pct	\times (m)	Y(m)	Z(m)	Cod
100 101 102 103 106 107 104 105 108 109 170 171 180 171 181 314 800 190 150 151 111 112 113	644977.220 645476.991 646215.119 646415.388 644304.050 644457.407 644836.725 644834.466 644644.587 644551.196 646282.698 646230.396 646742.474 64742.474 645399.911 645205.720 644810.435 645371.119 645257.173 644633.633 644564.852 644581.814	281606.988 281928.501 278303.458 278284.559 278087.824 278531.631 278550.022 278625.106 279218.477 279161.748 281348.314 281399.172 280736.578 280564.817 279494.696 279561.727 280867.626 277801.910 277360.069 279750.257 279764.458 279838.558	$114.929 \\116.098 \\128.318 \\146.183 \\179.553 \\182.329 \\172.603 \\180.939 \\184.071 \\182.879 \\164.610 \\163.158 \\164.859 \\177.304 \\182.313 \\182.622 \\166.289 \\145.743 \\137.011 \\182.974 \\183.895 \\179.999 \\$	111111111111111111111111111111111111111

Photo.4 - Points network support positioned GNSS technology, GPS system, used for coordinate transformation in the national reference

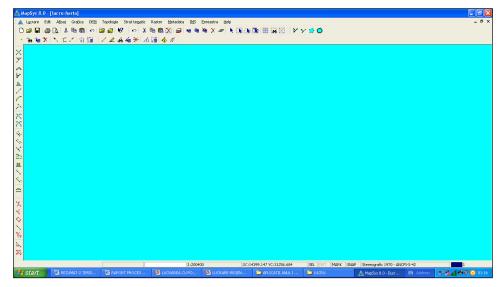


Photo.5 - Program interface MapSys 8.0

RESULTS AND DISSCUSION

Trimble Total Control (T.T.C.) was used to process the recorded data, and for the transformation of the coordinates in the national reference system (Tămâioagă, Tămâioagă, 2007), the local (zonal) transformation parameters obtained from previous studies for the area were used.

This is the data processing report with Trimble Total Control (T.T.C.).

2. Baselines Input in WGS84 (Components and Std.Dev.)

Observation	ΔXm	<u>omm</u>	ΔYm	<u>o mm</u>	ΔZm	omm	Solution
100-200	1130.5268	39.3	-2727.5596	26.9	74.1564	31.8	Double Diff. / Fixed / L1
100-5000	1129.1110	81.7	-2725.3324	49.1	75.7567	53.9	Double Diff. / Fixed / L1
100-5001	1153.1952	77.4	-2759.3556	41.6	65.4406	52.4	Double Diff. / Fixed / L1
100-5002	1172.2825	77.9	-2731.6354	37.1	39.7915	53.9	Double Diff. / Fixed / L1
100-5003	1148.4825	59.3	-2701.1422	34.2	49.0658	44.2	Double Diff. / Fixed / L1
5000-200	2.7975	66.5	-1.3913	46.3	-1.1742	48.2	Double Diff. / Fixed / L1
5001-200	-21.8348	99.6	32.0461	64.0	8.8875	58.7	Double Diff. / Fixed / L1
5001-5000	-25.1367	73.9	33.6824	38.4	9.4446	48.3	Double Diff. / Fixed / L1
5002-200	-42.0363	98.7	4.2186	53.1	34.1922	69.3	Double Diff. / Fixed / L1
5002-5003	-24.5673	119.8	30.3466	74.8	8.8468	86.4	Double Diff. / Fixed / L1
<u>5003-200</u>	-17.4742	81.5	-26.1298	53.7	25.3240	57.5	Double Diff. / Fixed / L1

- Standard deviations of the static baselines have been multiplied with the factor 10.00.

1. Fixed Transformation Parameters WGS84->National:

Parameter	Value	σ
Scale	1.000000495	0.00000000
Rotation X	2.1924"	0.0000"
Rotation Y	-2.7177"	0.0000"
Rotation Z	-1.0512"	0.0000"
Translation X	-71.0581m	
Translation Y	55.5504m	
Translation Z	148.2930m	

3. National Control Points Input (Plane Coord. and Std.Dev.)

Point	Northing	0	Easting	0	Elevation	0
<u>100</u>	644977 2200m	0.0mm	2816069880m	0.0mm	1149290m	0.0 mm .

Observation	ΔΧ	O	ΔΥ	0	ΔI	0
100-200	1130.7176m	146 <i>5</i> mm	-2727.4349m	93.lmm	74.2408m	1103mm.
100-5000	1128.2790m	2223mm	-2725.7055m	1360mm.	753607m	153 lmm
100-5001	1153.1145m	2373mm	-2759 3644m	135 4mm	65.60.52m	1577mm
100-5002	1172.5578m	2583mm	-2731.6271m	133 lmm	39 9392m	181 4mm
100-5003	1148.3331m	2126mm	-2701.1970m	1268mm	48 <i>9</i> 850m	1557mm.
<u>5000-200</u>	2.4386m	2168mm	-1.7295m	1380mm	-1.1200m	1509mm
<u>5001-200</u>	-22 3969m	2407mm	31 9294m	1428mm	8.6355m	159 Smm.
<u>5001-5000</u>	-24.83.55m	2457mm	33.6589m	137 4mm	9.7555m	1627mm
5002-200	-41.8402m	268 2mm	4.1922m	144 4mm	34.3016m	189 fmm.
5002-5003	-24 2247m	297 6mm	30.4301m	1669mm	9.0458m	2119mm
5003-200	-17.6155m	2269mm	-26.2380m	140 fmm.	25.2558m	1657mm

4. Adjusted Baselines in WGS84 (Components and Std.Dev.)

5. Baseline Residuals (Residuals and Standardized Res.)

Observation	Northing Res.	Stand. Res.	Easting Res.	Stand. Res.	Height Re .	Stand. Res.	Rel.No.
100-200	-107.0mm	-1.525	43.7 nm	0.542	2137mm	1.750	1.17
100-5000	400 6mm .	2.057	-32.5mm	-0.195	-909 2mm	-2.965	1.87
100-5001	1690mm	0912	22.2mm	0.157	67 9 nm	0.266	1.64
100-5002	-89.4mm	-0.552	-959mm	-0.904	283 6mm	1.143	131
100-5003	62.0mm	0.513	5.5mm	0.062	-167 3mm	-0.951	1.14
5000-200	374 Smm	2.126	-178.2mm	-1323	-272 2mm	-1.240	1.59
5001-200	2438mm	0.891	103 5mm	0.589	-568 3mm	-1.438	2.01
5001-5000	12.4mm	0.083	-135.lmm	-1.096	4117mm	1.826	132
5002-200	-519mm	-0.215	-98 3mm	-0.569	1969mm	0.514	1.89
5002-5003	-121.2mm	-0.367	-51.6mm	-0.202	3829mm	0.784	2.19
5003-200	79.8mm	0.401	-47.1mm	-0.282	-166.6mm	-0.520	1.86

6. Adjusted Points in WGS84 (Cart. Coordinates and Std.Dev.)

Point	X	G	Y	6	Z	G
<u>100</u>	4017039.0688m	0.0 m m	1632108.7517m	0.0 m m	4662161.9079m	0.0 m m
<u>200</u>	4018169.7863m	146 Smm	1629381.3167m	93.1mm	4662236.1487m	110.3mm
<u>5000</u>	4018167.3478m	2223mm	1629383.0462m	136.0mm	4662237.2686m	153.1mm
<u>5001</u>	4018192.1833m	237 3mm	1629349.3873m	135.4mm	4662227.5131m	157.7mm
5002	4018211.6266m	2583mm	1629377.1245m	133.1mm	4662201.8470m	181.4mm
5003	4018187.4019m	212.6mm	1629407.5547m	126.8mm	4662210.8929m	155.7mm

7. Adjusted Points in WGS84 (Geogr. Coordinates and Std.Dev.)

Point	Latitude	G	Longitude	G	Height	Elevation	G
<u>100</u>	N 47° 16'05.46194"	0.0mm	E 22° 06' 42 23936"	0.0 m m	155.8714m	1149290m	0.0 m m
<u>200</u>	N 47° 16'06.57191"	98.9mm	E 22° 04' 21.78901"	87.5mm	225 2753m	184 3273m	157.7mm
<u>5000</u>	N 47° 16'06.63481"	1553mm	E 22° 04' 21 90885"	126.1mm	225.0055m	184.0576m	226 Smm
<u>5001</u>	N 47° 16' 06.17389"	165.4mm	E 22° 04' 19 98106"	1262mm	224.8744m	1839259m	237.1mm
5002	N 47° 16' 04 93350"	174.4mm	E 22° 04' 20.85626"	1239mm	2253210m	1843717m	267.6mm
<u>5003</u>	N 47° 16' 05 39422"	148.0mm	E 22° 04' 22.63079"	115.4mm	224.4917m	1835429m	224 3mm

8. Adjusted Points in National System (Plane Coord. and Residuals)

Point	Northing	Easting	Elevation	Northing Res.	Easting Res.	Height Res.
<u>100</u>	644977 2200m	281 <i>6</i> 06 9880 m	1149290m	-0.0mm	-0.0mm	-0.0mm
<u>200</u>	645120.4185m	278657.3680m	184.3273m	N/A	N/A	N/A
<u>5000</u>	645122.2664m	2786599578m	184.0576m	N/A	N/A	N/A
<u>5001</u>	645109.5448m	2786189263m	1839259m	N/A	N/A	N/A
<u>5002</u>	645070.5746m	278635.8913m	184.3717m	N/A	N/A	N/A
<u>5003</u>	645083.4098m	278673.7027m	183 <i>5</i> 429m	N/A	N/A	N/A

9. Adjusted Points in National System (Plane Coord. and Std.Dev.)

Point	Northing	G	Easting	G	Height	Elevation	6
<u>100</u>	644977 2200m	0.0 m m	281 <i>6</i> 06 <i>9</i> 880m	0.0 m m	127.6631m	1149290m	0.0 m m
<u>200</u>	645120.4185m	98.9mm	278657.3680m	87.5mm	197.0317m	184.3273m	1 <i>5</i> 7.7mm
<u>5000</u>	645122.2664m	1553mm	2786599578m	126.1mm	196.7620m	184.0576m	226 Smm
<u>5001</u>	645109.5448m	165.4mm	2786189263m	1262mm	196.6301m	1839259m	237.1 mm
5002	645070.5746m	174.4mm	278635.8913m	1239mm	197.0761m	184.3717m	267.6mm
<u>5003</u>	645083.4098m	148.0mm	278673.7027m	115.4mm	1962476m	183.5429m	224 3mm

Inventory positioned with GPS coordinates and processed in accordance with the technical rules in force in national reference system (stereograph-1970 plan and those odds BLACK SEA-1975) are as follows spread sheet.

10. Adjusted Points Error Ellipses

Point	Semimajor Axis	Semininox Axis	Angle	95% confidence radius
<u>100</u>	0.0 m m	0.0mm	90.0°	0.0 mm
200	99.8mm	86.5mm	15.0°	228.7mm
5000	155.4mm	126.0mm	-39°	347.7mm
<u>5001</u>	165.Smm	126.1mm	2.0°	363.1mm
5002	174 Amm	123.8mm	-1.1*	375.7mm
5003	148.4mm	114.8mm	-7.2°	327 2mm

Table 1

Inventory coordinates minutiae related court of forest cottage

Punctul	X(m)	Y(m)	Z(m)
100	644977.2200	281606.9880	114.9290
200	645120.4185	278657.3680	184.3273
5000	645122.2664	278659.9578	184.0576
5001	645109.5448	278618.9263	183.9259
5002	645070.5746	278635.8913	184.3717
5003	645083.4098	278673.7027	183.5429

Table 2

Punctul	X(m)	Y(m)	Z(m)
200	645120.6168	278657.4908	184.3512
2000	645067.9502	278749.8365	183.6462
2001	645071.7685	278740.8098	183.4580
2002	645090.4117	278749.5207	183.2425
2003	645086.4009	278758.5764	183.3682
3000	645087.0660	278739.7169	183.4857
3001	645093.0924	278731.7619	183.4051
3002	645110.0666	278742.9483	182.9728
3003	645103.8650	278751.0137	183.1073
4000	645100.9123	278754.3630	183.1904
4001	645109.5296	278760.2358	183.0058
4002	645097.0857	278775.9594	183.1794
4003	645088.8610	278770.1337	183.2745

Inventory related minutiae coordinate sample surfaces

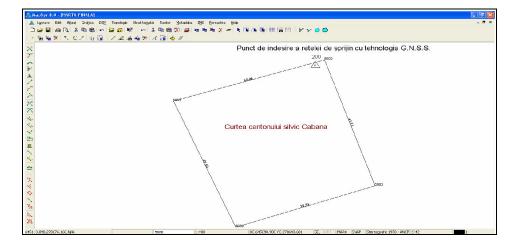


Photo.6 - Minutiae related court-reporting of forest cottage with MapSys8.0 program.

From the analysis of the image in photo.6 we can see the position in which the sample surfaces were located within the experimental device in which the regeneration of the oak stands is studied.

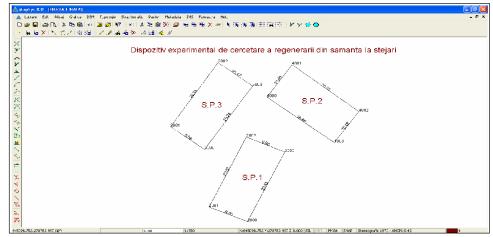


Photo.7- Reporting of determined sample points for test surfaces in the experimental device with MapSys 8.0

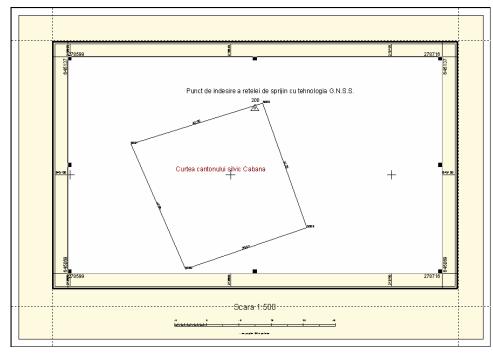


Photo.8- Topographic plan for the canton court

The topographic plan will be made according to the experimental device.

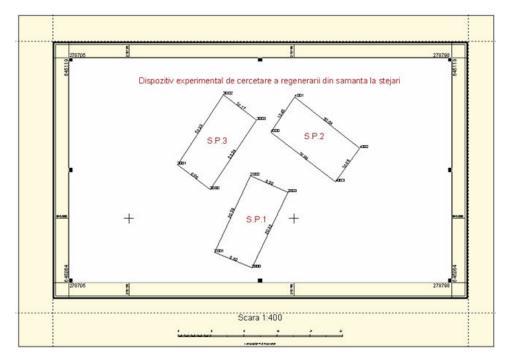


Photo.9 - The topographic plan corresponding to the associated sample surface the experimental device for studying the regeneration of oak stands

CONCLUSIONS

Positioning the GPS points of detail, in particular working conditions, is achieved with great precision and high accuracy, whether the use of appropriate methods.

The GPS system can be used for spatial positioning in the massive forest and growing season, high efficiency, if recorded data processing is done with established programs this flow sheet.

Using the local transformation parameters (area), obtained from common points determined rigorously, allows the production of precise coordinates.

In order to verify accuracy and position accuracy of detail points, one or more points that have been determined with the G.P.S. system can be repositioned by post-processing with high precision.

Support points that are located in and/or at the boundary of the forest massifs need to be discreetly marked and signaled (currently with FENO type terminals), not to attract attention, which leads to stability and perennially.

Points thickening network support will be placed as far as possible like glades, pockets, mesh regeneration, to position with high precision.

If there are inside or/and at the limit of the forest massifs, layouts made of concrete or carved stone, and they are properly fixed in the soil, they will try to position them precisely so that the geo-referential map can be subsequently mapped area, the common points thus determined.

REFERENCES

- .Ádám J., Bányai L., Borza T., Busics G., Kenyeres A., Krauter A., Takács B., 2004, Müholdas helymeghatározás, Müegyetemi Kiadó, Ungaria;
- Bodog Marinela, Crainic Ghiţă Cristian, 2016, Some Specific Characteristics of the Geomatic Applications in the Agro-Forestry Sector, Analele Universității din Oradea, Fascicula Protecția Mediului, Vol. XXVII, 2016, pp.337-346, ISSN 1224-6255;
- 3. .Chițea G., Vorovenci I., Mihăilă M., Chițea C.G., 2011, Topografie. Metode de ridicare în plan, Editura Lux Libris, Brașov;
- Crainic Gh. C., 2011, Cercetări privind modernizarea lucrărilor topo-geodezice din sectorul forestier -Teză de doctorat, Ministerul Educației, Cercetării, Tineretului şi Sportului, Universitatea Transilvania din Braşov, Facultatea de Silvicultură şi Exploatări Forestiere, Departamentul de Exploatări Forestiere, Amenajarea Pădurilor, Măsurători Terestre, Braşov;
- Crainic G. C., Damian V. L., 2011, Issues Related to the Use of The Points in Geodetic Triangulation of State in Positionig With Static Relative GNSS Method, Analele Universității din Oradea, Fascicula: Protecția Mediului, Vol. 17(16), ISSN -1224-6255, pg. 450-459;
- Crainic G. C., Damian V. L., 2011, Positioning Opportunities of Details from the Forest Fund With GNSS of Hill-Growing Technology with the Method "Fast Static", Analele Universității din Oradea, Fascicula: Protecția Mediului, Vol. 17(16), ISSN -1224-6255, pg. 468-477;
- 7. Marton H., 2007, MapSys, TopoSys Manual de utilizare, Odorheiu Secuiesc;
- Păunescu C., Mocanu V., Dimitriu S.G., 2006, Sistemul global de poziționare G.P.S., Editura Universității din București;
- 9. Sabău N.C., 2010, Măsurători Terestre, Editura Universității din Oradea;
- 10. Sabău N. C., Crainic Gh. C., 2006, Teledetecție și Cadastru Forestier, Editura Universității din Oradea;
- 11. Tămâioagă G., Tămâioagă D., 2007, Automatizarea lucrărilor de cadastru, Editura Matrix Rom, București;
- 12. http://saniob-bh.pe-harta.ro/.