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Abstract 

In this paper we propose a numerical method for solving nonlinear equations from 

astronomy. In order to ensure the maximum number of exact digits after dot in the approximate 
solution we propose to apply multiple iterations to Newton's method. Proposed method is a gain, 

significantly reducing the number of iterations. 
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INTRODUCTION 

 

In the year 2001 S. Sheppard and D.C. Jewitt discovered the moon 

Margaret of the planet Uranus. The observations that followed confirmed 

that it is a distinct celestial body and on 9 October 2003 it was included in 

the list as the 27th moon of Uranus. The current eccentricity of the moon 

Margaret, in the year 2008, was 0.7979, temporarily giving it the most 

eccentric orbit of any moon in the solar system.  

One of the methods for solving nonlinear equations is the Newton’s 

method. A nonlinear equation to which one can apply the method of Newton 

is Kepler's equation from Astronomy. The math expression between polar 

coordinates of a celestial body and the time from a fixed point is provided 

by the equation of Kepler. It is to be noted that the equation of Kepler 

cannot be reversed from the point of view of simple functions to see where 

the planet will be at a fixed time.  

Kepler’s equation has been solved numerically using the Newton's 

method as can be seen in (Montenbruck O. et al., 2009), while in (Aaboe A., 

2011) is used the method of successive approximations, (Colwell P., 1993), 

(Danby J.M.A., 1988), (Demidowitch B. et al., 1979), (Swerdlow N.M., 

2000). It can be seen that the number of exact digits in these approximations 

could not be established with certitude when the Lipschitz constant of the 

involved function is greater than 0.5. Here we propose a refinement of 

Newton’s method by multiple iterations such that to ensure the maximum 

number of exact digits in the approximate solution. 
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MATERIAL AND METHOD 

 

Problem of nonlinear equations can be generically written as: 

 

 Rxxf ∈= ,0)(  (1) 

 

Such equations occur frequently in the analysis of systems in the 

field of Astronomy. Generally, it is impossible to calculate the solutions of 

nonlinear equations by a finite number of arithmetic operations. It requires 

an iterative method, that is a procedure that generates an infinite sequence of 

approximations { }Nnxn ∈, so that α=
∞>−

n
n

xlim , where α is a solution of the 

equation. 

It is assumed that the function f(x) is continuous on the interval 

],[ ba  and has a real solution ],[ ba∈α , with f ' (x) and f '' (x) being 

continuous and keep the sign.  

Equation (1) is transformed in equivalent form:  

 

 )(xx ϕ=  (2) 

 

Starting from the initial approximation x0 for the solution α results 

the recurrent string of successive approximations:
 

...2,1,0,)(1 ==+ ixx ii ϕ . 

If the string is convergent it results exist n
n

x
∞>−

= limα . If φ(x) is continuous it 

results that )(αϕα =  is the solution of the equation. Process is convergent 

only in the intervals where 1|)(| ' <xϕ . 

Theorem. Let the equation )(xx ϕ= , with the function φ(x) defined 

and derivable on ],[ ba . If inequality 1|)(| ' <≤ λϕ x  is satisfied for any 

],[ bax ∈ , then the iteration string defined by the relation 

...2,1,0,)(1 ==+ ixx ii ϕ  converges to the solution of the equation, regardless 

of the initial value x0. 

Process converges more quickly to the solution α when λ is lower. 

In Newton's method the equation (1) can be replaced with the 

equivalent equation:  

 

 
)(

)(
' xf

xf
xx −=  (3)  

 

that is, the iteration function is:  
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)(

)(
)(

' xf

xf
xx −=ϕ  (4)  

 

Consequently, iterative process is: ...,2,1,0,
)(

)(
'1 =−=+ i

xf

xf
xx ii . 

Convergence criterion is εδ ≤
∆

≡
+1i

i
i

x

x
 or 1+≤∆ ii xx ε . Solution's 

correction is 
)(

)(
'1

i

i
iii

xf

xf
xxx −=−=∆ + . 

In graphical interpretation from Figure 1 it is observed that starting 

from the initial approximation x0 for α, the improved approximation xi+1 is 

obtained by tangent to y = f(x) in (xi , f(xi)). 

 

 
Fig. 1. Determining successive approximation in Newton's method.  

 

In general, choosing starting value is a difficult problem. In practice, 

a value is chosen, and if after a fixed maximum number of iterations the 

desired precision has not been obtained, tested by one of the usual criteria, 

try a different start value. If the root is isolated in an interval ],[ ba  and 

),(,0)('' baxxf ∈≠ , a criterion of choice is 0)()( 0

''

0 >xfxf . Another 

criterion is: if f is convex or concave on the interval ],[ ba , 0)()( <bfaf  

and the tangents in the ends intersect the axis Ox in the interval ),( ba , it is 

possible to choose any value ],[0 bax ∈  as starting value. 
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Each real solution of equation (4) is isolated in a specified interval 

by the method of roots separation generated by the technique of the Rolle's 

sequence when Newton's method is used, see (Demidowitch B. et al., 1979). 

Further, each such interval is shorted so that the first derivative 'ϕ  respects 

1(x)' <ϕ  on the interval [a, b]. Thus, starting from any first value 
0x  the 

recurring sequence of successive approximations converges to the solution 

of equation (4). 

If ],[ ba∈α  is the exact solution of the equation (4), then 

α=
∞→

n
n

xlim  and the following a posteriori error estimate: 

 

 *

1 ,
1

Nnxx
L

L
x nnn ∈∀−

−
≤− −α  (5) 

 

where { } 1,],[:)(max ' <∈= LbaxxL ϕ  is the Lipschitz constant of ϕ , see 

(Demidowitch B. et al., 1979). The math expression (5) provides a practical 

stopping criterion of the recurrent sequence, according to which for a 

fixed 0>ε the sequence stops at the first *Nn ∈  for which ε<− −1nn xx . 

Thus the precision in the estimation xn of α is 
L

L
xn −

≤−
1

ε
α . 

If the Lipschitz constant 5.0≤L  the inequality k

nn xx −
− =<− 101 ε  

offers the insurance that the first k-1 digits after dot in the approximate 

solution are accurate. But if 0.5<L<1 the inequality k

nn xx −
− =<− 101 ε  

does not ensure the accuracy of the first k-1 digits after dot in the 

approximate solution. 

As can be seen in the paper (Curila M. et al., 2013) the multiple 

iteration based on the iterative sequence 

 

 Nixx i

timesp

i ∈=+ ,))(...(1 43421
ooo ϕϕϕ  (6) 

 

extends the interval (0 , 0.5] to 







p

2

1
,0  for the Lipschitz constant L, 

because the a posteriori error estimate becomes: 

 

 *

1 ,
1

Nnxx
L

L
x nnp

p

n ∈∀−⋅
−

≤− −α  (7) 
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so that for k−=10ε  the first k-1 digits are exact in the estimation xn. 

Consequently, by multiple iteration, the interval (0 , 0.5] is extended to the 

interval 







p

2

1
,0  for the Lipschitz constant L, in order to ensure the 

maximum number of exact digits after dot in the approximate solution. 

 
NUMERICAL EXPERIMENT 

 

This is where the multiple iteration method based on Newton's 

method applied to numerical solving of Kepler's equation from Astronomy 

is being tested. 

Let q be the mean anomaly (a parameterization of time) and x the 

eccentric anomaly (a parameterization of polar angle) of a celestial body 

orbiting on an ellipse with eccentricity E, then Kepler's equation is given by: 

 

 qxEx +⋅= )sin(  (8) 

 

where ( ]1,0∈E  and q > 0, see (Aaboe A., 2011) and (Swerdlow N.M., 

2000). 

Taking E=1 and q=0.25, corresponding to a comet, the equation (8) 

becomes: 

 

 




∈+=
2

,
4

,25.0)sin(
ππ

xxx  (9) 

 

As shown in the previous section, it follows 25.0)sin()( −−= xxxf  . 

In this case we use triple iteration that ensures the maximum number 

of exact digits after dot in the approximate solution. Taking 
4

0

π
=x  and 

1284 10,10,10 −−−=ε  we obtain with this method the results presented in 

table 1: 

 
Table 1 

The method of triple iteration 

ε  N xn exact digits 

10-4 4 1.1712 1.171 

10-8 7 1.171348536 1.1713485 

10-12 11 1.171348543621 1.17134854362 
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With simple iteration the results are presented in table 2: 

 
Table 2 

Newton’s method 

ε  N xn exact digits 

10-4 9 1.1712 1.171 

10-8 15 1.171348536 1.1713485 

10-12 21 1.171348543621 1.17134854362 

 

In the case of moon Margaret of planet Uranus, the experimental 

results obtained for the approximation of Kepler's equation solution with the 

Newton’s method and with the method of triple iteration are presented in 

table 3: 

 
Table 3 

Approximation of Kepler's equation solution for Margaret moon of Uranus planet 

Newton’s method triple iteration 

ε =1e-16 ε =1e-16 

n=11 n=4 

x0 ÷ x11 x0 ÷ x4 

0.7853981633974483 0.7853981633974483 

1.0112803788642934 1.4315761978365244 

1.1329967434762813 1.6875781214952719 

1.2985767849963402 1.6993557606481634 

1.4315761978365244 1.6993557606481634 

1.5578139610843792  

1.6866127654223918  

1.6875781214952719  

1.6984587086498526  

1.6988857086388278  

1.6993557606481634  

1.6993557606481634  

 

As can be viewed in these two examples, by using the Newton’s 

method we need to repeat once the iterations when the sequence becomes 
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stationary, in order to be sure about the number of iterations. So, our 

proposed method offers the certitude for the number of exact digits.  

 
CONCLUSIONS 

 

From a numerical point of view, the proposed method is a gain 

compared to the Newton's simple iteration method, significantly reducing 

the number of iterations. 

The multiple iteration method improves the Newton's simple 

iteration method with regard to extending the interval for the Lipchitz 

constant from (0 , 0.5] to 







p

2

1
,0 , so as to ensure the maximum number of 

exact digits in the approximate solution of the nonlinear equation. 

Although it requires the same conditions as Newton's simple 

iteration method, in addition to this, the multiple iteration method provides 

certainty about the number of exact digits of the approximate solution. 

This numerical method used for the equation of Kepler can also be 

applied to other nonlinear equations occurring in various other applied 

areas. 
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