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Abstract 

The form of the trees is a challenge for more than two centuries and yet it remained a current 

matter that must keep up with technological development. This issue needs answers in real time. To 

explain and model the taper (tree stem), researchers use various geometrical objects (neiloid, cone, 

paraboloid, cylinder) and form equations. Solving the problems concerning cone, paraboloid or 

composite formes is achieving satisfying results using the traditional approach of analytic geometry. 

In this paper, we have presented, on the basis of data sets, how using classical geometry or equations 

may create standards that can approximate the taper of trees. The species of trees chosed is spruce, 

(Picea abies L., H. Karst.) situated in the limit of the ecological species habitat. In the second part of 

the article we have carried out an experiment through which was tested informations obtained 

through mathematical modeling of taper form. The results indicate that there are differences between 

the three different models selected, which under certain conditions can be significant. The 

environmental factor is the main cause of taper form variability even in restricted areas, sometimes 

within the same production unit. That induces many iregular shapes which can be retrieved in the 

proposed models. 
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INTRODUCTION 

 

Volume calculation of trees is based on theoretical valuation methods 

relied on the application of classical geometry elements such as solids of 

revolution (Behre, 1923). A solid of revolution is defined as a surface 

rotating around a straight line called pivot (Burkhart, Tome, 2012). The 

most known methods for calculating the volume that are based on geometric 

applications of solids of revolution are those proposed by Huber, Newton 

and Smalian (Giurgiu, 1975; Forslundr, 1982). 

Deepening and much better understanding of the classical theory on 

calculating the volume of trees could help improve understanding the theory 

of formation of trees taper and by default in identification of easy ways to 

estimate the volume (Giurgiu, 1979). Determining the volume is often 

difficult because it depends on the geometry of the taper of the trees 

(Giurgiu, Drăghiciu, 2005). 

The importance of tapper ecuations is relevant in context of multitude 

of models used (Kozak et al., 1969; Bruce et al., 1968; Kozak, 1988; 

Newnham, 1988; Cao et al., 1980; Matte, 1949; Tomas, Parkesol, 1991; 
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Bruce, 1972; Reed, Byrne, 1985; Walters, Hann, 1986; Bi, 2000; Valentine, 

Gregoire, 2001; Sharma, Zhang, 2004). 
 

MATERIAL AND METHOD 

 

The material include trees, for which was measured relative square 

diameters (di
2
 /Dbh

2
) along the stem. Thus di

2
 represent square diameter 

outside bark at height i, and Dbh
2
 is the square diameter at breast height 

outside bark. 

A total of 23 spruce trees were destructively sampled. Diameter at 

breast height (d in centimeters, 1.3 m above ground) was measured to the 

nearest 0.1 cm to each of stem. The trees were later cut down, leaving 

stumps of average height 0.3 m and totale bole length was measured to the 

nearest 0.01 m to estimate the total tree height (in meters). Two 

perpendicular diameters over bark were measured in ech cross section (at 

each hi in meters from ground level), to the diameter <0.1 cm, and were then 

averaged. The diameters were measured every each meater, resulting a 863 

values (Ormerod, 1973). 

The volume of the solids of revolution is determined by the function f. 

The volume may be defined as an object obtained by rotating the subgraph 

of function f around the pivot. Given  a,b є R, a<b and [a, b] → R+ . Set Cf 

= {(x,y,z) є 223 / z+yR ≤ f(x); a≤x≤b} it is called the solid of revolution 

determined by the function f, or the solid obtained by rotating the subgraph 

of function f around the pivot Ox.  

If function g:[a,b] →R+ is constant on sections, meaning whether there 

is a division Δ = (a = x0 <.. <xn = b of [a, b]) so that g is constant on each 

period interval (xi-1 , xi), g(x)=ci, any x є (xi-i, xi) (xi-1, xi), then the solid of 

revolution determined by g is a finite cylinder union. The volume of such a 

solid of revolution is:  

   1

1

2

 ii

n

=i

ig xxcπ=Cvol  

The volume of the paraboloid of revolution is obtained by rotating 

about the Ox-axis of the function f: [0, b] → R + (Fig. 1).  

   

The cone volume: considering: r = 0, the object generated by rotation 

is the circular cone of height h, the basic circle having radius R (Fig. 1). 
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The volume of the frustum of a cone is obtained by rotating the 

trapezoid O'ABO" around the Ox-axis. If we consider r and R as rays of the 

frustum of cone bases, the equation of the straight-line AB is 

rax
ab

rR
=y 




)(  where h = b-a represents the height of the cone.  

 

Regarding the taper of trees, they can be modeled by division in 

longitudinal sections and by substituting them through solids of revolution. 

The general equation has the form: 

;  where according to Graves (1906), b is a constant, b ≥ 0. 

In the cases where b = 0, 1, 2, and 3 are generated by the solids of 

revolution such as the cylinder, paraboloid, cone, respectively neiloid.  

The volume is obtained by integration of equation from above is: 

1

1
2

0
+m

H
πk=dxDπ=V

+m

m

H

   

For cylinder hπr=V 2 , for cone, that is 1/3 of the volume of the 

cylinder, hπr=V 2

3

1
, for frustum of cone  hRr+r+Rπ=V 2

2

3

1
, 

Starting from the relationship V = SL, the volume of the solids of 

revolution D
b
, where V is the volume, S the sectional area, L the length of 

the section, and b, as it was shown before, has the values 0, 1, 2, 3 having as 

input elements the surface of the section and the length of the piece it results 

the volumes of the frustum of solids of revolution generated by the general 

equation. 

SL=V0 , volume of the cylinder L
s+S

=V 








2
1 , volume of the frustum 

of paraboloid, mathematical relationship that Smalian used, 

L
s+Ss+S

=V














3
2 , volume of the frustum of cone, 

L
s+Ss+sS+S

=V














4

33 22

3 , volume of the frustum of neilod, formula 

used by Newton and known as Newton’s Prismoid. 

Formulas of Smalian, Huber and Newton used for volume calculation. 

In order to determine the volume of a solid of revolution we consider l as 

the height (length) of the solid of revolution that is divided into sections of 
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length i. The solids thus formed can be assimilated to cylinders with the 

same volume. The total volume is calculated as the sum of the cylinders 

volumes. If we consider S, S1/2 and s as the surface areas at the thick end, in 

the middle, respectively at the small end. 

Starting from the relationship V=SL:      

Smalian assimilates the taper to that of a paraboloid and he proposes 

the following equation for calculating the volume: 

 s+Sl=V
2

1
.        

Huber assumes that the average cross-sectional area is at the midpoint 

of the measured piece. The formula proposed by Huber is:  

 2/1
2

1
Sl=V .   

To provide more accuracy, Newton developed a formula which is 

based on measurements at both ends of the measured section and in the 

middle, as well. Newton proposed formula has the form: 

 s+S+Sl=V 2/14
6

1
        

Errors calculation  

Regarding the formulas of Newton and Smalian, the differences can 

be seen in the relation:  

      212/12/121
21 2

6
422

66

4
s+ss

l
=ss+s

l
=l

s+s+s
ls m

m 







     

To analyze how the three formulas, estimate the volume of the taper, 

we use the method proposed by Assis et al. (2002), based on the elements: 

bias, SD, SSRR, RP. 

 

,  , 

 ,   .  

Another method of errors estimation is based on the relation:  

 

 ;  ;  

 ;  ;  ;    

where: Vn is the volume calculated using Newton’s formula, Vs is the 

volume calculated using Smalian’s formula, Vh is the volume calculated 
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using Huber’s formula, Es = error (Vn-Vs) for Smalian’s formula, Eh ¬ = 

error (Vn - Vh) for Huber's formula. 
 

RESULTS AND DISCUSSION 

 

The average diameter distribution along the length of the taper and the 

average tree trunk shape can be observed in Fig. 1. Using formulas of 

Smalian, Huber and Newton, described above, it was calculated the volume 

of the 23 trees. The volume was calculated on each segment; felled trees 

being measured on sections of 1 m length. It was also taken over the volume 

from the Yield tables, with two entries, d and height, used in Romania. 
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Fig. 1. Diameters distribution relative to the height, profile of the big, small and medium 

tree 

 

Table 1  

The volume calculated with the formulas of Smalian, Huber, Newton and the volume 

extracted from production tables for Romania 

No. 

Prb. 

Volume (mc) 

 

Smalian 

 

Huber Newton 
Yield 

table 

1 2,666 2,663 2,664 2,942 

2 2,963 2,960 2,961 3,096 

3 0,340 0,338 0,339 0,472 

4 2,043 2,040 2,041 2,344 

5 1,849 1,844 1,845 2,058 
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No. 

Prb. 

Volume (mc) 

 

Smalian 

 

Huber Newton 
Yield 

table 

6 4,888 4,886 4,887 4,464 

7 2,993 2,989 2,991 3,307 

8 2,681 2,676 2,678 2,714 

9 4,701 4,696 4,698 4,591 

10 1,654 1,650 1,651 1,558 

11 2,472 2,470 2,471 2,419 

12 1,189 1,185 1,186 1,230 

13 2,616 2,613 2,614 3,070 

14 1,352 1,348 1,349 1,404 

15 0,095 0,095 0,095 0,079 

16 0,773 0,771 0,772 0,681 

17 2,300 2,298 2,298 2,365 

18 0,684 0,682 0,683 0,681 

19 1,955 1,953 1,954 1,828 

20 0,487 0,486 0,486 0,449 

21 1,596 1,593 1,594 1,555 

22 4,677 4,672 4,674 4,708 

23 2,158 2,155 2,156 2,193 

Vt 49,131 49,064 49,086 50,208 

 

To analyze how the three formulas approximate the shape of the tree 

from Fig. 1, for sections of 4 and 8 m, the volume is calculated using 

analyzed formulas. As a reference volume, observed, we will consider the 

volume calculated using Newton’s formula. The data are presented in Table 

2. Vi=1 represents the volume calculated by using Newton’s formula on the 

sections of 1m. 

Calculating the errors using we consider the analyzed reference 

volume as the volume calculated using Newton’s formula. 
Table 2  

Errors calculation for the volume achieved by using formulas of Smalian and Huber 

Formula Nr. 

tree 

V 

mc 

Vmed. Bias SD SSRR SR e 

Smalian 23 49,13 2,13 -0,00 0,13 2,21E-

06 

-0,12 0,04 

Huber 23 49,06 2,13 0,00 0,00 1,27E-

05 

0,06 0,02 

Newton 23 49,08 2,13      
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To calculate the errors for the sample tree from Fig. 1, the volume 

observed was considered the resulting volume by applying Newton’s 

formula on sections of 1 m, and in this way we can also follow how 

Newton’s formula approximates the volume on segments of 4 and 8 m. 
 

CONCLUSIONS 

 

In this article we have analyzed three volume formulas proposed by 

Huber, Smalian and Newton. Newton proposed formula provides the most 

correct theoretical calculation of volume samples. Huber's formula, which 

resembles the taper of the tree to a frustum of paraboloid, may be 

considered to be the most practical, given that it requires a single diameter 

measurement on the taper of the section.  

Smalian’s formula is less accurate than Huber’s formula as it uses 

diameters measured at the two ends of the section excluding the central 

diameter and in circumstances in which section is very close to the 

geometric shape of neiloid, this mathematical model gives very large errors. 

At the same time the calculations show that this formula has a tendency to 

overestimate the volume. 

All three formulas analyzed in this paper provide good results while 

the length of the pieces whose volume should be calculated is reduced, 

practically the calculation from this paper was made on segments measured 

at 1 m distance. Volume calculation methods described in the paper apply 

specifically to brought down wood to access the elements that must be 

measured. As appears from the data presented in this paper as the length of 

the measured section is higher, the accuracy of estimating the volume 

decreases, the provided formulas failing to capture the natural pattern of the 

taper. 

Newton’s proposed formula gives the best results, so it works well for 

cylinder, neiloid, paraboloid and cone. In practice this method of volume 

calculation is less used because it requires collecting a significant amount of 

data.Deepening and much better understanding of the classical theory on 

volume calculation of trees could help improve understanding the theory of 

tree taper formation and thus in finding easy ways to estimate the volume. 
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