RESEARCH THE DROUGHT INFLUENCE ON SOYBEAN CROP IN THE CONDITIONS OF CRIȘURILOR PLAIN

Cenușa Nicolae*

*University of Oradea, Faculty of Environmental Protection, Oradea, Romania, e-mail: cenușa.nicolae@yahoo.com

Abstract

Results of research were obtained in the research field of soil water balance from Agricultural Research and Development Station Oradea. Soil water reserve on the 0-75 cm depth dropped below the easily available water content 81 days in 2013 and 108 days in 2014. Water storage on the 0-75 cm depth also dropped below the wilting point, 8 days in 2013 and 26 days in 2014. As a result, in order to maintain water storage between the easily available water content and field capacity on the 0-75 cm depth, 3.350 m3/ha irrigation rate was used in 2013 and 4.300 m3/ha in 2014. The irrigation participated in the optimum water consumption with 69% in 2013 and with 50% in 2014. Consequently, higher yields resulted, the differences against the non-irrigated crop being 2,590 kg/ha (446%) in 2013 and 2,280 kg/ha (543%) in 2014, which are very significant statistically.

Keywords: pedological drought, water supply, soil water reserve, yield, soybean

INTRODUCTION

Hera Cr. and Canarache (2004) believes that drought is a "natural phenomenon that occurs when rainfall is significantly lower than those recorded normal, causing water balance disorders that adversely affect land resource production systems". According to this definition, the drought can be present in different climate zones, in the years when there is, deficiency of rainfall from the multiannual average.

Droughts constitute extreme climate events which, by their effects, are natural disasters regular event, consisting of a drastic reduction of rainfall and water resources, over long periods of time. The scarcity of rainfall leads to reduced water reserves available for all utilities as well as environmental protection. The drought is considered the most complex and least understood natural hazard, with stronger effects than other hazards. (Domuta, 2009, 2010; Borza, Stanciu, 2010)

Two types of drought are well known and widely used by Romanian specialists in climatology and agriculture: pedological drought and meteorological drought. Climatic indicators are another way of assessing the presence of drought. Even if the criterion Hellman after which is defined meteorological drought should include this indicator between climatic
indicators, we felt that it should be treated as a separate indicator given the reputation it enjoys. (Jude, 2012)

In the "Dictionary of soil science" pedological drought is defined as "drought mainly due to low soil moisture, even under satisfactory atmospheric conditions, does not allow absorption by plants of sufficient of water in the soil" (Conea et al. 1977). Domuţa (2003) considers the words "low humidity" too vague and suggests that this notion of pedological drought to be related with hydro indices and especially the easily available water content that is "point of the accessible range of moisture to the soil moisture may decrease without crops being sensitive affected "and proposed the following concepts:

- pedological drought, defined as the period where the soil reserve on watering depth of crops are below easily available water content;
- strong pedological drought, considered to be the period when the water supply of crops on irrigation depth is below the wilting point, meaning that the wilting point as a punt from fixed interval.

Highlighting the number of days with water reserve on watering depth below the easily available water content and the number of days with water reserve under wilting point coefficient on this depth was achieved by Domuta (1995) and then by Tusa (1992), Petrescu (1999), Radulescu (1999).

MATERIAL ȘI METHOD

The research was conducted during 2013-2014 in the field of soil water balance from Oradea.

Two variants were studied:
- unirrigated,
- irrigated, with maintaining of water reserve between easily available water content and field capacity on watering depth of 0-75 cm.

Main physical and hydrophysical properties

Preluvosoil from the research field is characterized by a very high hydrostability of soil aggregates more than 0.25 mm, 47.5% of layer by 0-20 cm.

The soil had a total medium porosity at depth by 0-20 cm, 20-40 cm, 40-60 cm and less in depth by 6-80 cm, 80-100 cm and 100-150 cm. Total porosity values decrease on the soil profile from the surface to depth. Hydraulic conductivity is high on the depth 0-20 cm, medium on depth by 20-40 cm and 40 cm, low and very low on the following depths studied.

Active humidity interval (IUA) or useful water capacity had a high value in the depth 0-80 cm and the middle at depth 80-150 cm. On watering
depth used on the research field the active humidity range had a great value (Domuța C., 2009, 2012). Depending on soil easily available water content was set at 2/3 active humidity moisture (AHM). (Table 1).

Table 1.

<table>
<thead>
<tr>
<th>Depth - cm -</th>
<th>Total aggregate %</th>
<th>Clay 0,002%</th>
<th>TP %</th>
<th>K mm/h</th>
<th>BD g/cm³</th>
<th>Field capacity % m³/ha</th>
<th>Wilting point % m³/ha</th>
<th>Easily available water content % m³/ha</th>
<th>AHM % m³/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>47.5</td>
<td>31.5</td>
<td>21.0</td>
<td>1.41</td>
<td>24.2</td>
<td>682</td>
<td>9.2</td>
<td>259</td>
<td>19.2</td>
</tr>
<tr>
<td>20-40</td>
<td>-</td>
<td>34.1</td>
<td>10.5</td>
<td>1.52</td>
<td>23.6</td>
<td>717</td>
<td>9.4</td>
<td>286</td>
<td>18.9</td>
</tr>
<tr>
<td>40-60</td>
<td>-</td>
<td>39.8</td>
<td>4.4</td>
<td>1.58</td>
<td>25.1</td>
<td>768</td>
<td>11.1</td>
<td>351</td>
<td>19.9</td>
</tr>
<tr>
<td>60-80</td>
<td>-</td>
<td>39.3</td>
<td>1.0</td>
<td>1.65</td>
<td>24.4</td>
<td>828</td>
<td>10.8</td>
<td>356</td>
<td>20.4</td>
</tr>
<tr>
<td>80-100</td>
<td>-</td>
<td>38.8</td>
<td>0.5</td>
<td>1.57</td>
<td>23.8</td>
<td>766</td>
<td>12.2</td>
<td>383</td>
<td>20.4</td>
</tr>
<tr>
<td>100-150</td>
<td>-</td>
<td>37.6</td>
<td>0.1</td>
<td>1.54</td>
<td>24.0</td>
<td>1833</td>
<td>14.2</td>
<td>1093</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Bulk density (BD) - 1.41 g/cm³ - characterizes a poorly compacted soil at depth 0-20 cm; on other depths studied the apparent weight highlights a moderately and strongly compacted soil (Brejea, 2010, 2014). On watering depth (0-50 cm, 0-75 cm) and on 0-150 cm the soil is strongly compacted. Field capacity had a middle value throughout the soil profile and wilting coefficient is also worth to middle depth of 80 cm and higher below this depth.

Easily available water content take into account the texture and degree of compaction of the land was calculated as follows (Canarache, 1990):

\[
\text{Wea} = \text{WP} + f(\text{FC} + \text{WP}) = \text{WP} + f \cdot \text{IUA}
\]

In which:
- \(\text{Wea}\) = easily available water content (% g/g);
- \(\text{WP}\) = wilting point
- \(\text{FC}\) = field capacity
- \(f\) = fraction of the active humidity interval;
- \(\text{IUA}\) = active humidity interval

Total water consumption was calculated using the equation of soil water balance in closed circuit (without phreatic input) (Botzan, 1972, Grumeza et al,1989):

\[
R_i + P_v + \sum m = R_f + \sum (e+t),
\]

In which:
- \(R_i\) = initial water reserve, m³/ha;
- \(P_v\) = rainfall during the maize vegetation period, m³/ha;
- \(\sum m\) = irrigation rate (m³/ha);
\[R_f = \text{final water reserve (at harvesting), m}^3/\text{ha}; \]
\[\sum(e+t) = \text{plants water consumption; m}^3/\text{ha}; \]

Irrigation involves a set of technical and organizational measures in order to establish a rigorous rational regime of irrigation, regarding the evaluation of water necessity, to the size and sequence of irrigation application consistent with thorough knowledge of relationships between soil-water-plant systems (Domuta, 2010).

Yield research data were calculated by variance analysis method (Saulescu, 1967).

RESULTS AND DISCUSSION

Pedological drought in soybean crops

In the soybean crops, we speak of pedological drought when the soil water reserve within the watering depth (0.75 cm) drops below the easily available water content, and when it drops below the wilting point, there is a period of severe pedological drought (Domuţa, 2009). There were 81 days of pedological drought in 2013. In 2014, pedological drought set in as early as April and the total number of pedological drought days in the soybean irrigation season went up to 108 days (Table 1).

Soil water reserve (SWR) on the 0-75 cm depth dropped below the wilting point for 8 days in August 2013 and for 26 days in 2014 (Table 3).

Table 2

The number of days when soil water reserve (SWR) was below the easily available water content (Wea) on the 0-75 cm depth in the unirrigated soybean, Oradea 2013-2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Vegetation period - days</th>
<th>Days with SWR < Wea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>April</td>
</tr>
<tr>
<td>2013</td>
<td>168</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>170</td>
<td>3</td>
</tr>
</tbody>
</table>

IS – irrigation season: 1st IV – 10th VIII;

Table 3

The number of days when soil water reserve (SWR) was below the wilting point (WP) on the 0-75 cm depth in the unirrigated soybean, Oradea 2013-2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Vegetation period - days</th>
<th>Days with SWR < WP in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>April</td>
</tr>
<tr>
<td>2013</td>
<td>168</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>170</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimum water supply of the soybean crop

In order to maintain water storage between the easily available water content and field capacity, the soil moisture content within the 0-75 cm depth was measured twice a month. Based on the data obtained, it was
concluded that the irrigation water needed was 3,350 m3/ha in 2013 (8 x watering) and 4,300 m3/ha in 2014 (10 x watering) (Table 4).

Table 4

<table>
<thead>
<tr>
<th>Year</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>May-August</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∑m</td>
<td>n</td>
<td>∑m</td>
<td>n</td>
<td>∑m</td>
</tr>
<tr>
<td>2013</td>
<td>500</td>
<td>1</td>
<td>850</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>2014</td>
<td>1300</td>
<td>3</td>
<td>500</td>
<td>1</td>
<td>1200</td>
</tr>
</tbody>
</table>

∑m – irrigation rate, n – number of rates

The influence of irrigation on the water consumption of the soybean crop

Irrigation caused an increase in the total water use by 69% in 2013 and by 50% in 2014. In the case of the irrigated soybean crop, less water was used from the soil water storage (Table 5).

Table 5

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total water consumption</th>
<th>ISWR-FSWR</th>
<th>Vegetation period</th>
<th>Irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m3/ha %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unirrigated</td>
<td>4715 100</td>
<td>1695</td>
<td>3020</td>
<td>-</td>
</tr>
<tr>
<td>Irrigated</td>
<td>7978 169</td>
<td>608</td>
<td>3020</td>
<td>3350</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unirrigated</td>
<td>5085 100</td>
<td>2545</td>
<td>2540</td>
<td>-</td>
</tr>
<tr>
<td>Irrigated</td>
<td>7608 150</td>
<td>768</td>
<td>2540</td>
<td>4300</td>
</tr>
</tbody>
</table>

ISWR = Initial soil water reserve;
FSWR = Final soil water reserve

The influence of irrigation on soybean yield in 2013

The year 2013 was not a good one for the soybean crop, thus the yield in the case of the unirrigated crop was 580 kg/ha. Using irrigation when water storage within the watering depth dropped below the easily available water content resulted in an yield gain of 2,590 kg/ha (446%), the different is very significant statistically (Table 6, Fig. 1.)

Table 6

<table>
<thead>
<tr>
<th>Variant</th>
<th>Yield</th>
<th>Difference</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg/ha</td>
<td>%</td>
<td>Kg/ha</td>
</tr>
<tr>
<td>Unirrigated</td>
<td>580</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Irrigated</td>
<td>3170</td>
<td>546</td>
<td>2590</td>
</tr>
</tbody>
</table>
The influence of irrigation on soybean yield in 2014

The year 2014 was again a bad one for the soybean crop, thus without irrigation the yield was 420 kg/ha. Using irrigation when water reserve on watering depth dropped below the easily available water content resulted in an yield of 2,280 kg/ha (543%), an amount that is very significant statistically (table 7, Fig. 2.)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Yield (Kg/ha)</th>
<th>%</th>
<th>Difference (Kg/ha)</th>
<th>%</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unirrigated</td>
<td>420</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Control</td>
</tr>
<tr>
<td>Irrigated</td>
<td>2700</td>
<td>643</td>
<td>2280</td>
<td>543</td>
<td>XXX</td>
</tr>
</tbody>
</table>

Table 7

Fig. 1. Yields (kg/ha) obtained at soybean in condition of unirrigation and irrigation, Oradea 2013

Fig. 2. Yields (kg/ha) obtained at soybean, in unirrigate and irrigated conditions from Oradea, 2014
CONCLUSIONS

Looking at the favourability of pedoclimatic conditions, the economic and agrotechnical importance, it can be said that soybean crops covers small areas in the Crişurilor Plain. One of the reasons is the drought presence. The paper presents the research carried out at the Oradea Agricultural Research and Development Station in 2013 and 2014 on the preluvusoil, and the conclusions are as follows:

- Soil water reserve on the 0-75 cm depth dropped below the easily available water content 81 days in 2013 and 108 days in 2014. Soil water reserve on the 0-75 cm depth also dropped below the wilting point, 8 days in 2013 and 26 days in 2014. As a result, in order to maintain the soil water reserve between the easily available water content and field capacity on the 0-75 cm depth, 3.350 m³/ha irrigation rate was used in 2013 and 4.300 m³/ha in 2014.

- Irrigation determined an increase in the total water consumption by 69% in 2013 and by 50% in 2014. Consequently, higher yields resulted, the differences against the non-irrigated crop being 2,590 kg/ha (446%) in 2013 and 2,280 kg/ha (543%) in 2014, which are very significant statistically.

The results obtained sustain the need for irrigation soybean crops from Crişurilor Plain.

REFERENCES

14. Domuța Cr., 2010, Cercetări privind influența irigației asupra culturilor de porumb, soia și sfecle de zahăr în Câmpia Crișurilor, Teză de doctorat. USAMV Cluj-Napoca