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Abstract 

With the purpose of forest remote sensing images analysis, this method utilizes a Blind 
Source Separation technique, named Robust Second Order Blind Identification. In orthogonalization 
stage, a Robust orthogonalization is performed which ensures that positive definite covariance matrix 
is not sensitive to the additive noise. 

The separation process considers the periodical spatial distribution of vegetation as source, 
namely the coverage along the forest plantation position. Consequently, the spectrum of vegetation 
was estimated as the mixture ratio of the source. 

This technique allows recognizing the qualitative change of vegetation from the estimated 
spectra and quantitative one from the coverage. 
 
Key words: blind source separation, robust ortogonalization, forest images, spectrum, vegetation, 
soil, coverage. 
 
INTRODUCTION 
 

The artificial installation of forest vegetation on the land in the national forest 
stock, which were covered with single regeneration cuttings (clear cuttings), is one of the 
priority objectives of the National Forest Administration. The introduction into the 
economic-forest circuit of some plots of land with relatively extreme conditions of 
vegetation, called degraded lands, can be achieved by artificial installing of forest 
vegetation on them. 

A preliminary step to this end is the process of identifying and mapping of these 
areas, known as perimeters of improvement, a step which can be done by using spectral 
reflectance of the existing underlying surfaces in the work area. Based on the spectral 
response obtained from the analysis of forest remote sensing images (forest 
orthophotomap), like the one in Figure 1, the technical solutions regarding the artificial 
installation works of forest vegetation (phytomeliorations) can be substantiated. 
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Fig. 1. Forest remote sensing image (forest orthophotomap). 

 
In the remote sensing images, many materials contribute to the value of a pixel, so 

that the pixel value is a mixture that produces a mixed spectrum. 
Blind Source Separation technique consists in retrieving the source signals without 

resorting to any a priori information about mixing; it exploits only the information carried 
by the received signals themselves. 

This processing method estimates the spectra and the coverage by applying the 
Blind Source Separation technique to the forest remote sensing images for recognizing fine 
structure vegetation change on forest plantation. This technique allows separation the 
change of vegetation into qualitative one due to ecological characteristics such as the 
chlorophyll quantity from the estimated spectra and quantitative one from the coverage.  

Some methods extract the spectra from the observed mixed spectra by considering 
the spectrum against wavelength as independent component. In the purpose of the 
component elements separation this processing method adopts the idea proposed by 
N.Kosaka and Y.Kosugi in (Kosaka N. et al., 2003) to consider the periodical spatial 
distribution of crops, namely the coverage along the surface position as the independent 
component, so that the spectrum of crops is estimated as the mixture ratio of the 
independent component.  

Also, this method allows the separation in the presence of the fluctuation of 
vegetation coverage and additive Gaussian noise, such as thermal noise of the sensors and 
atmospheric noise, in the real data.  
 
MATERIAL AND METHOD 
 

A formula of the general atmospheric model for transmission of radiation is 
described in (MODTRANS Report, 1996). It contains three terms, the surface radiation, the 
atmospheric radiation and the scattered light including that by the earth surface: 
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where Iv represents the radiance observed by a satellite. The used parameters are described 
in (MODTRANS Report, 1996). When the observed scene is very close to the camera, the 
solid angle of the observation is very weak, the term corresponding to the reflection of the 
sky light is very weak as well and negligible, without affecting the pertinence of the model. 
The resulted model includes the two terms, namely surface radiation and atmospheric 
radiation. 

A light beam gets attenuated due to scattering by atmospheric particles. Mie's law 
(McCartney E.J., 1976) gives the following representation of the radiance of an object 
observed: 
                              ISR(x) = Io()∙e-x = I0() R() T(x)                         (2) 
where  is the wavelength,  is the scattering coefficient, Io is the object radiance, I0 is the 
sky radiance, R = Io/I0.is the reflection coefficient and      T = e-x is the transmission 
coefficient. 

The scattering of sky light is due to particles from atmosphere. The radiance at the 
observer after attenuation of the scattered light due to the aerosol particles between the 
scene and the observer is given by: 

                                    x
x

x
AR eIdxeIxI      1, 0

0
0                  (3) 

Assuming that the observation is made in a day with clear sky, we chosed to use a 
simple description that yields the properties of an actually model but only takes care of the 
surface radiation phenomen. 

The geometry of the observation in the forest plantation is depicted in Figure 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Mixed spectra observation. 
When into a pixel there are only vegetation and soil it can write the following 

relation: 
                                                   Tv(x)+Ts(x)=1                                             (4) 

In this case, the mixed spectra observed by sensor, at wavelength  and position x, 
are composed of two terms as: 
                                 I(x)=I0()[Rv()Tv(x)+Rs()Ts(x)]                            (5) 
where Rv() and Tv(x) are the spectra respectively the coverage of vegetation, Rs() and 
Ts(x) are the spectra respectively the coverage of soil and I0() is the intensity of incident 
light. 

By replacing Ts(x) from equation (4) into equation (5) the problem is reduced to 
the one channel estimation for the dependency on Tv(x), according to following relation: 

I0(

I(λ,
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                               I(x)=I0()[(Rv()-Rs())Tv(x)+Rs()]                         (6) 
The thermal noise of the sensor is considered as additive Gaussian noise. In a 

limited narrow area of a vegetation field the atmospheric condition is approximately 
uniform. Consequently, the atmospheric noise for each vegetation field can be 
approximated as an additive Gaussian noise. 

For real observations it can suppose additive Gaussian noise and consider 
fluctuations in vegetation coverage term because the size of each vegetation coverage might 
be irregular. Consequently, the mixed spectra observed become: 
             I(x)=I0()[(Rv()-Rs())(Tv(x)+ΔTv(x))+Rs()]+Rn()Tn(x)         (7) 
where Rn() and Tn(x) are the amplitude respectively periodical pattern of the noise and 
ΔTv(x) is the fluctuation of the vegetation coverage. 

The periodicity of the coverage according to the position x for vegetation and soil 
is presented in Figure 3. 

 
 

Fig. 3. The periodicity of the coverage 
 

From Johns Hopkins University Spectral Library 
(http://asterweb.jpl.nasa.gov/speclib/) was adopted the spectrum of Conifer for vegetation 
spectrum and the spectrum of Loam for soil spectrum. These spectra are represented in 
Figure 4. 

 
Fig. 4. Vegetation and soil spectra. 

Below is presented the problem formulation of the forest images analysis by a 
Blind Source Separation technique designed for separating the observed mixed signals from 
multiple sources into original signals. 

In many practical problems the processed data are multidimensional observations, 
that has the form: 
                                            x(k) = A s(k) + n(k) + c                                    (8) 
where the N-dimensional vector x(k) = [x1(k), x2(k),… , xN(k)]T is an instantaneous linear 
mixture of source signals, the M-dimensional vector s(k) = [s1(k), s2(k), … , sM(k)]T contains 
the source signals sampled at         1 kK, n(k)=[n1(k), n2(k), … , nN(k)]T is the additive 
noise vector that is assumed to be statistically independent of source signals and the matrix 
A called mixing matrix is the transfer function between sources and sensors. The source 
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signals si(k), 1iM (M N), are assumed independent, and additive noises ni(k), 1iN, 
can be spatially correlated but temporally white.  

From the relations (7) and (8) results the following equation: 
   I0()[(Rv()-Rs())(Tv(x)+ΔTv(x))+Rs()]+Rn()Tn(x)=A s(k) + n(k) + c  (9) 
According to the suggestion of N.Kosaka and Y.Kosugi presented in (Kosaka N. et al., 
2003), it can write the following relations: 
                                           A s(k)=I0()[(Rv()-Rs())(Tv(x)+ΔTv(x))] 
                                           n(k)=Rn()Tn(x)                                               (10) 
                                           c=I0()Rs() 

To obtain source signals from observations we utilize Blind Source Separation 
technique entitled Robust Second Order Blind Identification, described in the next section. 
 
ROBUST SECOND ORDER BLIND IDENTIFICATION (RSOBI) 
 

This algorithm was described by A.Cichocki in (Cichocki A. et al., 2002) on the 
foundation of Second Order Blind Identification algorithm, developed first by 
A.Belouchrani in (Belouchrani A. et al., 1997). This one consists of an orthogonalization 
stage fallowed by a unitary transform.  

Orthogonalization stage is performed by Robust orthogonalization algorithm 
described by A. Cichocki in (Cichocki A. et al., 2002). For preselected delays (p1, p2, ... , 
pJ) one estimates a set of symmetric delayed covariance matrices of sensor signals: 
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where Rx(p) is the delayed covariance matrix of the observation vector computed as: 
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and one constructs an NxNJ matrix: 

 R = [ )( 1

~
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~

JpxR ] (13) 
Then it is performed a singular values decomposition of matrix R:  
 R = Q  ZT (14) 
where NxN matrix Q = [Qs Qn] (with NxM matrix Qs=[q1…qM ]) and NJxNJ matrix Z are 
orthogonal, and  is an MxNJ matrix whose left M columns contain diag[] 
(with non increasing singular values) and whose right NJ-M columns are zero. For a non-
zero initial vector of parameters α = [α1, α2 ,..., αJ]T one computes the linear combination: 
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One performs the eigenvalues decomposition of R  and one checks if R  is positive 
definite. If R  isn’t positive definite one chooses an eigenvector v corresponding to the 
smallest eigenvalue of R  and one updates α by α+δ, where 
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and with new vector α one returns to compute the linear combination R . Otherwise, one 
performs the eigenvalues decomposition of symmetric positive definite matrix: 
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as follows: 
 VΛVαR T

x )(  (18) 
where α is the set of parameters αi after the algorithm achieves convergence positive 
definiteness of the matrix R , NxM matrix V = [v1, v2, ... , vM] contains the eigenvectors 
corresponding to the largest M eigenvalues of R , and  = diag[] 
contains the eigenvalues  arranged in decreasing order. The Robust orthogonalization 
transformation is realized by a linear transformation with matrix W: 
 y(k) = W x(k) (19) 
where the matrix W has the form: 
 W = -0,5 VT (20) 

The covariance matrices of the observed vector can be rewritten as: 
 Rx(p) = A Rs(p) AT (21) 
Because the source signals have unit variance and are assumed to be uncorrelated, the 
covariance matrix of the sources vector equals the unit matrix: 
 Rs(0) = E[s(k) sT(k)] = I (22) 
Consequently, Rs(p)=E[s(k) sT(k - p)] are non-zero distinct diagonal matrices, and it follows 
that: 
 Rx(0) = A AT (23) 
The components of the orthogonalized vector y(k) are mutually uncorrelated and they have 
unit variance. The orthogonalized covariance matrices are given by: 
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From equations (24) and (25) it results:  
 Ry(0) = W A AT WT = W A (W A)T = I (26) 
Thus, it follows that U = W A is an N x N unitary matrix. Consequently, the determination 
of M x N mixing matrix A is reduced to that of a unitary N x N matrix U. From equations 
(22) and (26) it results: 
 Ry(p) = W A Rs(p) AT WT = W A Rs(p) (W A)T,p0 (27) 
Since Rs(p) is diagonal, any orthogonalized covariance matrix Ry(p) with p0 is 
diagonalized by the unitary transform U. 

A.Belouchrani pointed out in (Belouchrani A. et al., 1997) that the unitary matrix 
U is retrieved by jointly diagonalizing a set of delayed covariance matrices. This matrix 
jointly diagonalizes the set MR={Ry(p)|p=1,…, P} when the next criterion is minimized: 
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where off operator is defined as:  
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The unitary matrix U is computed as product of Givens rotations, see (Belouchrani A. et al., 
1997). When the unitary matrix U is obtained, the mixing matrix is estimated by A=W+U 
and the unmixing matrix is then given by UT W, where + denotes the pseudo-inverse. 
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EXPERIMENTAL RESULTS 
 

The presented algorithm has been applied first on the simulated data of vegetation 
coverage from the considerate forest plantation pattern and second on the data from the real 
forest plantation. 

After the separation of the probability distribution the estimated spectra and the 
estimated coverage of vegetation for the simulated data can be see in Figure 5. 

 
                                a) Spectra                                          b) Coverage of vegetation 

Figure 5. Results of simulated data. 
The accuracy of the estimated results was evaluated objectively by mean square 

error. 
Figure 6 displays the estimated spectra and the estimated coverage of vegetation for 

a real forest plantation. 

 
                                a) Spectra                                        b) Coverage of vegetation 

Fig. 6. Results of real data. 
CONCLUSIONS 
 

For a qualitative and quantitative analysis of the forest remote sensing images this 
method use a Blind Source Separation technique. The probability distributions were 
separated by considering the periodical spatial distribution of vegetation as sources, namely 
the coverage along the forest plantation position. Therefore, the spectrum of vegetation was 
estimated as the mixture ratio of the source. 

The separation process was realized by Robust Second Order Blind Identification 
algorithm. In orthogonalization stage, a Robust orthogonalization was performed which 
ensures that positive definite covariance matrix is not sensitive to the additive noise.  

In the case of source signals with distinct spectra (different autocorrelation 
functions), one can use the delayed covariance matrices in the estimation process of the 
orthogonal mixing matrix. Other times it is rather difficult to determine a priori a single 
time lag p for which the diagonal matrix, used in the estimation process of the orthogonal 
mixing matrix, to have distinct diagonal elements. In these cases, one uses the Joint 
Approximative Diagonalization (JAD), that reduces the probability of un-identifiability of a 
mixing matrix caused by an unfortunate choice of time lag p. 
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The proposed method provides estimated spectra and coverage of vegetation with 
a good accuracy having the mean square error of 3.3% in the simulated case and 9.7% in 
the real data case, which confirm the feasibility of the separation process.  
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