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Abstract 
 In this paper we point out a method to ensure the same precision for the exact solution as 
the precision obtained by the last two iterations in the method of successive approximations. The 
method of double and multiple iteration could be an improvement of the method of successive 
approximations in the aim to extend the interval for the Lipchitz constant, such that the maximum 
number of exact digits to be ensured in the approximation of the Kepler's equation solution. 
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INTRODUCTION 
 
 The method of successive approximations is one of the powerful tools to solve 
nonlinear equations numerically.  
 A remarkable transcendental equation to which one can apply the method of 
successive approximations is Kepler's equation arising in Astronomy. Kepler's equation 
gives the relation between the polar coordinates of a celestial body, such as a planet or a 
comet, and the time elapsed from a given initial point. Kepler's equation is of fundamental 
importance in Astronomy, but cannot be directly inverted in terms of simple functions in 
order to determine where the planet will be at a given time. 
 Kepler’s equation and other nonlinear equations were early solved numerically 
and intensively studied using the method of successive approximations, as can be seen in 
(Aaboe A., 2011), (Colwell P., 1993), (Coman G. et al., 1976), (Danby J.M.A., 1988), 
(Demidowitch B. et al., 1979), (Swerdlow N.M., 2000), but the number of exact digits in 
these approximations could not be established with certitude when the Lipschitz constant of 
the involved function is greater than 0.5. In order to improve this status we propose a 
refinement of successive approximations method by including double or multiple iterations 
such that the number of exact digits in the approximation to be determined with 
assuredness. This is important from applications point of view since Kepler’s equation and 
similar other equations appear in several contexts in applied sciences and engineering. 
 Moon Margaret of planet Uranus was discovered back in 2001 by S.S. Sheppard 
and D.C. Jewitt. More recent observations showed it to be a distinct celestial body and on 
October 9, 2003, its recognition was officially accepted and included in the list as the 27th 
moon of Uranus. The discovery was made using the 8.3 meter Subaru telescope at Mauna 
Kea (Hawaii). In 2008, Margaret's current eccentricity was 0.7979. This temporarily gives 
Margaret the most eccentric orbit of any moon in the solar system, though Nereid's mean 
eccentricity is greater. 
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MATERIAL AND METHOD 
 
 In the case that the equation: 

Rxxf  ,0)(  
can be transformed into the equivalent form, 

RIxxx  ,)(  
with I an interval, the method of successive approximations generates a recurrent sequence: 

Nnxx nn  ,)(1   

which in certain conditions converges to one of the solution of the equation )(xx  . 
 When apply the method of successive approximations, each real solution of the 
equation )(xx   is isolated in a specified interval by using the method of roots 
separation generated by the technique of the Rolle's sequence, see (Demidowitch B. et al., 
1979). After these, each such interval is shorted as can as possible such that the first 
derivative '  to satisfy the inequality 1(x)'   on the whole interval. This inequality 
leads to the convergence of the sequence of successive approximations, given by the 
recurrence Nnxx nn  ,)(1  , to the solution, starting from any first iterative step 0x . 
 Let q be the mean anomaly (a parameterization of time) and x the eccentric 
anomaly (a parameterization of polar angle) of a celestial body (planet or comet) orbiting 
on an ellipse with eccentricity E, then Kepler's equation is given by: 
 qxEx  )sin(  (1) 

where  1,0E  and q > 0, see (Aaboe A., 2011) and (Swerdlow N.M., 2000). 
 In (Aaboe A., 2011), the method of successive approximations is applied to 

equation (1) for Mars and Mercur with 3
q  and  580x , while in (Montenbruck 

O. et al., 2009) the Newton's method is applied to equation (1). 
 If Ix *  is the exact solution of the equation )(xx   and 

Ix ,1(x)' , then *lim xxnn



 and the following a priori error estimate 
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and a posteriori error estimate 
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hold, where   1,:)(maxL '  LIxx  is the Lipschitz constant of  , see (Coman 

G. et al., 1976) and (Demidowitch B. et al., 1979).  
 The estimate (3) offers a practical stopping criterion of the sequence 

)(1 nn xx  , enounced as follows: for given 0 , find the first natural number n for 

which  1nn xx  and stop to this n. Then the precision in the approximation of x* by 

the term xn is 
L

Lxx n 


1
* 

. 



 321 

 The purpose of this paper is to specify the precision of the approximation by 
indicating which digits are exact in the decimal representation of xn. How can help the usual 
method of successive approximations in this aim? For instance, if L=0.8,  =0.0001=10-4 

and xn=3.6518, then we have 0004.0*  nxx , that is 0004.0*  nxx . So, 

 6522.3,6514.3* x  and we cannot say that the third digit 1 is exact in xn=3.6518. 

But, if 5.0L , then K
nnn xxxx 
  101

*   and all K-1 of the first digits 

in the representation of xn are exact. More precisely, if L=0.5, xn=3.6518, and 410 , 

then 4* 100001.0  nxx  and  6515.3,6513.3* x . Thus, the third digit 1 is 

exact. From these, we see that if the Lipschitz constant L is such that 5.0L , then the 
inequality  1nn xx  offers the insurance that the first K-1 digits after dot are exact. 

But if 0.5<L<1 , then the inequality  1nn xx  not ensure the exactness of the first K-
1 digits. Can be ameliorated this situation? How? In order to respond to this question we 
pass to the idea of double iteration and more general, to multiple iteration. 
 The method of double iteration is described by the sequence 
 Nnxx nn  ,))((1   (4) 

Theorem: If 
2

1
L  then the a posteriori error estimate K

nn xx 
  101  leads to K-1 

exact first digits after dot, using the method of double    iteration (4). 
Proof: In the double iteration method, the Lipschitz property 

IyxyxLyx  ,,)()(   
leads to 
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and passing to limit for p , we get: 
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which is the a posteriori error estimate corresponding to the double iteration method. If 

2
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* ,10 Nnxxxx K
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 , that is the 

precision of nxx *  and 1 nn xx  are the same. So, the first K-1 digits are exact in the 

term xn. Since the case 
2

15.0  L  extends for L the interval [0 , 0.5] which ensure the 
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exactness of the digits, we infer that the method of double iteration ameliorates the problem 

of determining the precision when L>0.5, but 
2

1
L . Consequently, by the method of 

double iteration, the interval (0 , 0.5] is extended to the interval 







2

1,0  for the Lipschitz 

constant L, in order to ensure the maximum number of exact digits after dot. 
Remark: The method of multiple iteration based on the iterative sequence 

Nnxx n

timesp

n  ,))(...(1     

extend the interval (0 , 0.5] to 
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1,0  for the Lipschitz constant, because in this case, 

the a posteriori error estimate becomes 

*
1

* ,
1

Nnxx
L

Lxx nnp

p

n 


   

NUMERICAL EXPERIMENT 
 The experiment tests the method of successive approximations applied to 
numerical solving of Kepler's equation arising in Astronomy. 
 Consider Kepler's equation with E=1 and q=0.25 (corresponding to a comet): 
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 xxxxL . 

 Thus, the method double iteration is enough to ensure the maximum number of 

exact digits. Taking 
40


x  and 1284 10,10,10   we obtain with double iterations 

the results presented in table 1: 
Table 1 

The method of double iteration 
  n xn exact digits 

10-4 6 1.17122 1.1712 
10-8 11 1.1712296516 1.17122965 
10-12 16 1.1712296525016 1.171229652501 

With simple iteration the results are presented in table 2: 
Table 2 

The method of successive approximations 
  n 

10-4 11 
10-8 20 
10-12 30 

obtaining the same values for xn. 
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 The stopping criterion was: for given 0  find the first natural number n for 
which  

 1nn xx  
and stop to this iteration n, retaining the value xn as approximation of the solution. 
 In the case of moon Margaret of planet Uranus, the experimental results obtained 
for the approximation of Kepler's equation solution with the method of successive 
approximations and of double iteration are presented in table 3. 
 As can be viewed in these two examples, we can specify that after 6 double 
iterations, the approximate of the solution of Kepler’s equation applied to parabolic orbits 
has exact first four digits after dot, and after 10 double iterations, the approximate solution 
of Kepler’s equation applied to the orbit of the moon Margaret has first 20 exact digits after 
dot. By using the method of successive approximations we need to repeat once the 
iterations when the sequence becomes stationary, in order to be sure about the number of 
iterations. So, our proposed method offers the certitude for the number of exact digits. 

Table 3 
Approximation of Kepler's equation solution  

for Margaret moon of Uranus planet 
successive approximations double iteration 

 =1e-20  =1e-20 
n=19 n=10 

x0 ÷ x19 x0 ÷ x10 
0.7853981633974483 0.7853981633974483 
1.4012804896930611 1.6929876112851803 
1.6929876112851803 1.6992433643487772 
1.7001895718653675 1.6993536570170995 
1.6992433643487772 1.6993556442601510 
1.6993707533921545 1.6993556800795808 
1.6993536570170995 1.6993556807252190 
1.6993559524325146 1.6993556807368566 
1.6993556442601510 1.6993556807370664 
1.6993556856343333 1.6993556807370702 
1.6993556800795808 1.6993556807370702 
1.6993556808253425  
1.6993556807252190  
1.6993556807386614  
1.6993556807368566  
1.6993556807370989  
1.6993556807370664  
1.6993556807370707  
1.6993556807370702  
1.6993556807370702  

 The method exemplified here for Kepler’s equation could be applied to other 
nonlinear equation arising in engineering, physics, and biology, with the same benefit. 
 
CONCLUSIONS 
 
 In order to solve transcendental Kepler's equation arising in Astronomy, one can 
apply the method of successive approximations which is one of the powerful tools to solve 
nonlinear equations numerically.  
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 The method of double and multiple iteration could be an improvement of the 

method of successive approximations in the aim to extend the interval (0,0.5] to 







p 2
1,0  

for the Lipchitz constant, such that the maximum number of exact digits to be ensured in 
the approximation of the solution. 
 This method is a real improvement of the method of successive approximations 
from numerical point of view. 
 The applicability of the method consists in the following aspects: 
- requires the same conditions as the method of successive approximations; 
- in comparison with the method of successive approximations offers the certitude about the 
number of exact digits of the approximation; 
- it is an improvement of the method of successive approximations specifying the necessary 
number of iterative steps in order to ensure a specified tolerance in the approximation of the 
solution; 
- can be applied to the same examples from the area of sciences and engineering as the 
method of successive approximations. 
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