THE INFLUENCE OF SUBSTRATUM OVER THE PRODUCTIVITY AND QUALITY OF SPATHIPHYLLUM FLORIBUNDUM

Vlad Ioan*, Vlad Mariana*, Vlad Ioana*

* University of Oradea, Faculty of Enverionmental Protection, 26 General Magheru St., 4100848, Oradea, Romania, e-mail: <u>ioanvlad2006@yahoo.com</u>

Abstract

In Romania the flowers are popular and apreciated by buyers, that is why in the Greenhouses Complex of Oradea, in 2008-2011were made experiments wich can prove the positive effect substratum over the productivity, quality and growth of plants.

The Columbia species were used in the experiment with big red flowers, hartshaped, bright - green leaves(24 - 26 cm/16 - 18 cm), with long stems (Georget P, 1999).

Key words: Spathiphyllum floribundum, peat, wood soil, sphognum mass, perlit, sheep manur.

INTRODUCTION

The beauty of flowers, the fact that they can by hold a long time in water, the high productivity all make Spathiphyllum a very beloved greenhouse plant. Analyzing the opinion of European producers and buyers, the Spathiphyllum in on the 6th place, after carnations, roses, tulips, chrysanthemums and gerberas (Selaru E; 2004).

MATERIAL AND METHOD

The research was carried out in the Greenhouses Complex of Oradea, in 2008-2011. The experiment contained three versions:

V1 - culture on substratum: 30% peat, 25% wood soil, 25% sphagnum moss, 10% perlite, 10% sheep manure;

V2 - culture on substratum: 40% peat, 20% wood soil, 20% sphagnum moss, 15% perlite, 5% sheep manure;

V3 - culture on substratum: 50% peat, 15% wood soil, 15% sphagnum moss, 20% perlite.

The thickness of culture substratum was 40 cm, place down warmed barriers.

Every version had 2 barriers of $60m^2$ each and accordingly $120m^2$.

The substratum was fertilized the same way for each version. During the experiment the pH was maintained between 4.5 and 5.6. The plants were planted in August assuring a density of 7 plants/ m^2 on a barrier (Lammene E; 2000).

During the experiment 40 fertilizations were made using a complex fertilizer with a concentration of 0.1 - 0.3% (Zaharia D; 1994).

According to Table 1 the results were 40.1 flowers/m² at version 1 (substratum formed of 30% peat, 25% wood soil, 25% sphagnum moss, 10% perlite, 10% sheep manure), 52.53 flowers/m² at version 2 (substratum formed of 40% peat, 20% wood soil, 20% sphagnum moss, 15% perlite, 5% sheep manure), 56.94 flowers/m² at version 3 (substratum formed of 50% peat, 15% wood soil, 15% sphagnum moss, 20% perlite).

Table 1

The production of Spathiphyllum floribundum								
	Flower productivity			The significance				
Versions	Absolute	Relative	Difference	of the difference				
	(flower/m ²)	%						
V1 - 30% peat, 25% wood								
soil, 25% sphagnum moss,	40.1	100	-	-				
10% perlite, 10% sheep	40.1							
manure								
V2 - 40% peat, 20% wood								
soil, 20% sphagnum moss,	52 53	131	12	vv				
15% perlite, 5% sheep	52.55	151	12	ΛΛ				
manure								
V3 - 50% peat, 15% wood								
soil, 15% sphagnum moss,	56.94	142	17	XXX				
20% perlite								
LSD 5% - 2.62	LSE	1% -4.78		LSD 0.1% - 8.53				

With regard to the relative aspect, a rise in production can be noticed, by 31% at V2 and by 42% at V3 in addition to the V1 variant.

With regard to the qualitative aspect, the production of Spathiphyllum floribundum is positively influenced by the growing substratum.

Table 2

The production quality of Spathiphyllum floribundum influenced by the growing substratum

	Productivity of cut flowers			
Varianta	Total	Excellent quality		
v ariants	$(flower/m^2)$	Absolute	Relative	
	(nower/m)	(flower/m ²)	%	
V1 - 30% peat, 25% wood soil, 25%				
sphagnum moss, 10% perlite, 10% sheep	40.1	36	89	
manure				
V2 - 40% peat, 20% wood soil, 20%				
sphagnum moss, 15% perlite, 5% sheep	52.53	49	93	
manure				
V3 - 50% peat, 15% wood soil, 15%	56.04	54	94	
sphagnum moss, 20% perlite	50.94	54		

At version 1 (substratum formed of 30% peat, 25% wood soil, 25% sphagnum moss, 10% perlite, 10% sheep manure), 89% of flowers were of excellent quality; at version 2 (substratum formed of 40% peat, 20% wood soil, 20% sphagnum moss, 15% perlite, 5% sheep manure), 93% of flowers were of excellent quality; at version 3 (substratum formed of 50% peat, 15% wood soil, 15% sphagnum moss, 20% perlite), 94% of flowers were of excellent quality.

Making an economic analysis of the three versions, the best substratum was formed of 50% peat, 15% wood soil, 15% sphagnum moss, and 20% perlite.

Because of the high quality of flowers and high productivity, the value of the production was 675 million lei/ha (version 2). The price of the flowers depended of the cutting period.

The value of the flowers was 750 000 lei/ha (version 3). The price of the flowers depended of the cutting period.

Analyzing the expenses, the cost of electricity and indirect expenses were 20% of all expenses.

	Expenses	The flower	The value of the	Profit
Variants	(thousand	production	production	(thousand
	lei/ha)	(thousand ha)	(thousand lei/ha)	lei/ha)
V1 - 30% peat, 25%				
wood soil, 25%				
sphagnum moss, 10%	456 000	40 000	600 000	144 000
perlite, 10% sheep				
manure				
V2 - 40% peat, 20%				
wood soil, 20%	467.000	45 000	675 000	208.000
sphagnum moss, 15%	407 000	43 000	073 000	208 000
perlite, 5% sheep manure				
V3 - 50% peat, 15%				
wood soil, 15%	470 500	50.000	750.000	270 500
sphagnum moss, 20%	479 300	50 000	730 000	270 300
perlite				

Production of flowers, expenses and profit

The profit at version 3 was higher with 62 million lei/ha than at version 2 and with 126 million lei/ha than at version1.

CONCLUSIONS

- Growing Spathiphyllum floribundum in greenhouses is a good source of money;

- Version 2 and 3 had a high productivity because of the higher percentage of peat and the perlite, 24% higher at version 2 (substratum formed of 40% peat, 20% wood soil, 20% sphagnum moss, 15% perlite, 5% sheep manure), and 31% higher at version 3 (substratum formed by 50% peat, 15% wood soil, 15% sphagnum moss, 20% perlite) as at version 1 (substratum formed by 30% peat, 25% wood soil, 25% sphagnum moss, 10% perlite, 10% sheep manure).
- The substratum with peat and perlite kept the water and thermal energy inside.
- The cost for obtaining the peat-perlite substratum was recovered from the profit.

REFERENCES

- 1. Georget, O. (1999). Floricultura, Lussanne.
- 2. Grunert, G. (2001). Zimmerblumer-Dresda.
- 3. Jhenesen, H. (2004). Le grand livre international des arbres, Ed. F. Nathan, Paris.
- 4. Krussman, G, (1998). Die Laubgeholze. Verlag Paul Parey, Berlin.
- 5. Krussman, G, (2005). Die Laubgeholze. Verlag Paul Parey, Berlin.
- 6. Knickmann, E. (1996). Pflanzen. Ernährung im Gartenbau, Ed. Eng. Ulmer, Stuttgart.
- 7. Lammene, E. (2000). Floriculture. La Maison rustique, Paris.
- 8. Laurie, A. (2007). Commercial flower forcing, London.
- 9. Niessen, A. (1994). Eclairmunt natural et eclairange artificial des serres. Les serres Maraich Orleans.
- 10. Nitschke, Gunter (1993). Le jardin japonais, Taschen, Koln.
- 11. Penningsfeld, P. (1992). Die Ernährung im Blumen und Zierflanzenbau, Paul Parcy.
- 12. Runger, W. (1984). Licht'und Temperatur in Zierflanzenbau, Ed. Paul Parcy Berlin.
- 13. Schosser, G. (1996). Pflanzenkultur mit dem pflanzenstrahler Ostram Grubtt, Berlin.
- 14. Selaru, E. (2004). Floriculture, Ceres Publishing house, Bucharest.
- 15. Tesi, R. (7/1998). La conservatione dei fiori recisivi. Ortoflorafruticolt.
- 16. Ulrich, Ruge. (2006). Angewandte Pflanzen-physiologie ale Gundiage fur den Eartenbau, Ed. Eng. Ulmer, Stuttgart.
- 17. Vlad, Mariana (2001). Arboriculture, Imprimeria de Vest Publishing house, Oradea.
- 18. Vlad, I. (2004). Floriculture, Imprimeria de Vest Publishing house, Oradea.
- 19. Zaharia, D. (1994). Floriculture, Tipo-Agronomia, Cluj-Napoca.
- 20. Zaharia D, S. (1994). Floricultura Tipo Agronomia, Cluj Napoca.