RESEARCHES CONCERNING THE MAIN BLOOD PARAMETERS OF CHICKEN BROILERS FED WITH A NEW GROWTH PROMOTER - FA

Simeanu D.

USAMV Iaşi; dsimeanu@uaiasi.ro

Rezumat

Cercetările s-au desfășurat în cadrul biobazei Facultății de Zootehnie a Universității de Științe Agricole și Medicină Veterinară "Ion Ionescu de la Brad" Iași, pe un număr de 250 pui broiler de găină, în vârstă de o zi, repartizați pe 4 loturi a câte 50 capete fiecare, din care un lot de control — Lc2 și patru loturi de experiență (LE5 — LE8). Conform planului experimental, nutrețurilor combinate destinate puilor broiler de găină studiați, au conținut biostimulatorul de creștere "FA", în doze de: 50 ppm la lotul LE5; 100 ppm la lotul LE6; 150 ppm la lotul LE7 și 200 ppm la lotul LE8. Pentru determinările hematologice s-au recoltat câte 10 probe/lot, înainte de sacrificarea puilor, la vârsta acestora de 42 zile. În vederea evitării oricărui proces de denaturare a probelor individuale s-a folosit un instrumentar adecvat și s-au utilizat recipienți corespunzători, sterilizați și ermetizați (sistemul "vacutainer"). Principalele constante sangvine (hematocritul, hemoglobina și numărul de eritrocite) studiate s-au încadrat în limite normale, citate de literatura de specialitate. În plus, s-a constatat că introducerea în hrana puilor broiler de găină a "biostimulatorului de creștere FA" a determinat realizarea unor indici hematologici superiori celor înregistrați la lotul de control (Lc2); de exemplu, hematocritul a fost mai ridicat cu 2,37-3,05%; hemoglobina cu 5,74-8,04%, iar numărul de eritrocite cu 3,44-10,34%.

Cuvinte chei: hematocrit, hemoglobină, eritrocite, pui broiler, biostimulator

Abstract

The researches have been organized within the experimental farm of the Animal Science Faculty, part of the "Ion Ionescu de la Brad" Iași University of Agricultural Sciences and Veterinary Medicine, using a flock of 250 day old chicken broilers, randomly allocated to 5 groups of 50 capitis each, meaning a control group — Lc2 and four experimental groups (LE5 — LE8). According to the experimental design, the studied chicken broilers have been fed with mixed feed added with different concentrations of "FA" bio-growth promoter: 50 ppm in LE5 group; 100 ppm in LE6 group; 150 ppm in LE7 group and 200 ppm in LE8 group. 10 blood samples/group have been taken for hematological analysis, prior to chickens slaughtering at 42 days old. In order to avoid any alteration process of the individual samples, certain instruments and appropriate recipients have been used after sterilization ("vacutainer" recipient). Main blood parameters have been analyzed: hematocryte, hemoglobin and erythrocytes amount. They have found within normal limits, also quoted in literature. Moreover, it was found that the usage of the "FA growth promoter" in chicken feeding induced better blood parameters in experimental treatments, compared to the control group (Lc2); thus 2.37-3.05% higher hematocryte; 5.74-8.04% higher hemoglobin and 3.44-10.34% more erythrocytes.

Key words: hematocryte, hemoglobin, erythrocytes, chicken broiler, bio growth promoter

INTRODUCTION

The researches related to the usage of certain bio-stimulating products as nutritional facts involved in growth and feed conversion enhancement of chicken broilers, as well as for the preservation of their health status, are a current practice worldwide. Within this trend, we proposed to study the blood parameters dynamics of those chicken broilers which consumed mixed feed (m.f.) added with "FA bio-growth promoter".

MATERIAL AND METHODS

The researches have been carried out within the Experimental farm of the Animal Science Faculty, part of the "Ion Ionescu de la Brad" Iaşi University of Agricultural Sciences and Veterinary Medicine, using 250 day old chicken broilers, divided in 5 groups of 50 capitis each, meaning a control group – Lc2 and four experimental treatments (LE5 – LE8) (*tab. 1*).

		_			
Iahla	1	Evno	rima	ntal	desian
I abic	1.		111116	ıııaı	uesiuii

Amount of		Experiment	Used feed across periods of		
Groups	chickens per group	duration (days)	Starter*	Grower*	Finisher*
Lc2	50	42	m.f.**	m.f.**	m.f.**
LE5	50	42	m.f. with 50 ppm FA	m.f. with 50 ppm FA	m.f. with 50 ppm FA
LE6	50	42	m.f. with 100 ppm FA	m.f. with 100 ppm FA	m.f. with 100 ppm FA
LE7	50	42	m.f. with 150 ppm FA	m.f. with 150 ppm FA	m.f. with 150 ppm FA
LE8	50	42	m.f. with 200 ppm FA	m.f. with 200 ppm FA	m.f. with 200 ppm FA

Studied indices:

Blood parameters:

- hematocryte (%);
- erythrocytes amount (mil./mm³ blood);
- hemoglobin quantity (g/100 ml blood)

Notice: * starter 1-10 days; growing period 11-24 days; finishing period 25-42 days;

The chicken broilers we used in our experiment belonged to the "Ross 308" hybrid and they have been accommodated into a BP-4 type cage battery, since day old till slaughtering, at 42 days.

The used feed meant complete mixed feed (energetic, vegetal proteic, animal proteic, minerals feedstuffs, premixes and synthetic feedstuffs).

According to the experimental design the feed used for "Ross 308" chickens comprised the "FA growth promoter", in proportions of 50 ppm for LE5 group; 100 ppm for LE6 group; 150 ppm for LE7 group and 200 ppm for LE8 group.

The FA bio-promoter is an indigenous product, resulted during B_{12} vitamin fabrication, after a culture environment filtration. Besides the main product - B_{12} vitamin – it results a thin dust dark brown colored, which contains the microorganism and part of the cultural environment. The microorganisms used for B_{12} vitamin synthesis are *Bacillus megaterium*, *Streptomyces griseus*, *Streptomyces aureofaciens*, *Streptomyces olivaceus* and *Streptomyces fradiae*, while the cultural environment comprises molasses and minerals (*Simeanu D.*, 2004, *Simeanu D. et al.*, 2001).

The mixed feed recipes have been formulated as isoenergetic and isoproteic, while their nutritional features have been slightly similar to the recommendations of the "Ross Breeders" company in Great Britain for the "Ross-308" hybrid.

Hematocryte (%), as the most precise index for the anemia or polycitemia status assessments, has been appreciated through the *microhematocryte* method, based on the centrifugal separation of the erythrocytes from plasma, in order to do a relative ratio between

^{**} mixed feed appropriate to each technological period

erythrocytes and whole blood volume. The readings have been run on the scale attached to the device (*Price S.E.H et al.*, 1998).

Hemoglobin (Hb/100 ml blood) was assessed through the method using Drabkin reagent, all the hemoglobin types in blood sample transform in cyanmethemoglobin, a steady product which could be measured via photometry and read at spekol device, knowing that its wavelength is 540 nm moved in comparison to the Drabkin solution (*Maxwell H.M.*, 1991).

The assessment of **erythrocytes amount** (mil./mm³ blood), relevant for anemia detection and especially of those oligocytemic types, consisted in their *microscopic direct counting* into an isotonic liquid environment, precisely known.

For erythrocytes amount reading the Cosma dilution liquid has been used: natrium chloride 1g, mercury dichloride 0.8 g, natrium citrate 0.3 g, ammonium oxalate 0.1 g, distilled water 100 ml.

The counting has been done using a hemocytometer composed of Potain pipette and of Burker-Turk counting chamber (Cochet Nelly, 1994).

Erythrocytes amount have then been calculated using the relation:

$$X = N \times I \times D \times S/n$$

where: X= whole amount of erythrocytes/mm³ blood; N= sum of the counted erythrocytes; I= height of counting chamber (10); D= used dilution (1/200); S=area of a 3rd order square (1/400); N=amount of scanned squares (80).

Ten samples/group have been taken to run blood assessments, prior to chickens slaughtering, at 42 days old.

In order to avoid any alteration on the individual blood samples, we used appropriate sampling instruments and preserving recipients, sterilized and sealed ("vacutainer" system).

RESULTS AND DISCUSSIONS

Concerning the *hematocryte* values, they have been situated within normal limits as quoted in the scientific literature (*Pârvu Gh., 1992; Chelaru Ana et al., 1997, 1998; Constantin N. et al., 1998, 1999*) (26±4.0) (*tab. 2* and *fig. 1*).

Table 2. Hematocryte values in studied chickens

oro z. Homai	tool yto valado ili otaaloa olilokollo		
Groups	$\overline{x} \pm s \overline{x}$ (%)	V%	
Lc2	29.5 ± 0.16	2.20	
LE5	30.2 ± 0.22	3.15	
LE6	28.9 ± 0.13	1.79	
LE7	29.2 ± 0.24	3.05	
LE8	30.4 ± 0.32	2.17	
Fisher test	$F_{\alpha 0.05}(4;45)=2.54$; $F_{\alpha 0.01}(4;45)=3.66$; $F_{\alpha 0.001}(4;45)=5.32$		
	\hat{F} =1.58: \hat{F} < $F_{g0.05}(4:45)$. The differences	were not statistically significant	

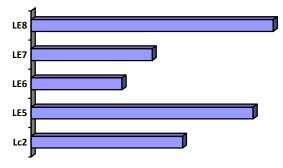


Fig. 1. Hematocryte values (%) in the studied chicken broilers

Data presented in *table 2* show lower values for the variation coefficient (<10%) in all experimental groups.

Although the values were comprised within the limits specified by literature, in control groups occurred higher values, meaning an improvement of the health status for those chickens which consumed the studied additive.

Hemoglobin (Hb) is the main blood pigment involved in superior animals respiration, which give the blood red color, through the bivalent iron within. Hemoglobin is almost exclusively found into the erythrocyte cytosol and could be 99.95% extracted (*Bell and Freeman, 1971; Gross W.B., 1984; Gociu Mariana et al., 1985; Manolescu N., 1999*), without alterations of the cell membrane.

Each erythrocyte contains environ $3x10^8$ Hb molecules or 27-34 pg Hb, in gravimetric units. The usage in feed of those compounds with high impact on erythropoesis induced us to quantitatively assess the hemoglobin existing in blood. Therefore, *table 3* and *figure 2* reveal the values of hemoglobin quantities found in control and experimental groups.

Table 3. Hemoglobin quantity assessed for the studied chickens

Groups	$\overline{x} \pm s \overline{x}$ (g/100 ml blood)	V%
Lc2	8.7 ± 0.12	1,67
LE5	9.2 ± 0.16	2,21
LE6	9.4 ± 0.18	1,72
LE7	9.3 ± 0.11	1,83
LE8	9.3 ± 0.14	2,24
Fisher test	$F_{\alpha 0.05}(4;45)=2.54$; $F_{\alpha 0.01}(4;45)=3.66$; $F_{\alpha 0.001}(4;45)=5.32$	
	\hat{F} =2.21; \hat{F} < F _{\alpha0.05} (4;45). The differences were not sta	tistically significant

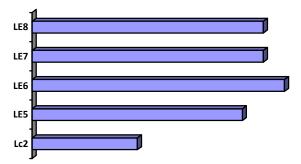


Fig. 2. Hemoglobin values (g/100 ml blood) in studied chicken broilers

From the presented data, it resulted that the achieved values are closely situated to the normal ones, published in literature (*Dunnington E.A. et al., 1987; Ghergariu S., 1995; Constantin N. et al., 1999*). Groups homogeneity could be considered as very well. Not statistically significance occurred for the differences although the experimental groups values were 5.74-8.04% higher than the control group ones.

Erythrocytes amount should minimally vary under normal physiological conditions, as a consequence of the dynamic adaptation between erythropoesis and erythrolisis rates. The researches revealed a slight increasing of the erythrocytes amount in the experimental treatments (LE5÷LE8), compared to the data found in scientific references (2.35±0.25 mil./mm³ blood) (*Maxwell H.M., 1991; Chelaru Ana et al., 1998*) (*tab. 4* and *fig. 3*).

Within the presented conjuncture, the usage of the FA bio-promoter (50-200 ppm in broilers feed) led to the achievement of certain higher indices, mainly of hemoglobin quantity and of blood erythrocytes amount.

Groups	$\bar{x} \pm s \bar{x}$ (mil./mm ³ blood)	V%
Lc2	2.9 ± 0.07	2.29
LE5	2.9 ± 0.06	3.20
LE6	3.1 ± 0.09	1.79
LE7	3.0 ± 0.10	2.34
LE8	3.2 ± 0.11	2.56
Fisher test	$F_{\alpha 0.05}(4;45)=2.54$; $F_{\alpha 0.01}(4;45)=3.66$; $F_{\alpha 0.001}(4;45)=5.32$	
	\hat{F} =1.76; \hat{F} < F _{$lpha$0.05} (4;45). The differences were not state	tistically significant

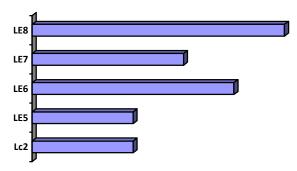


Fig. 3. Erythrocytes amount (mil./mm³ blood) in studied chicken broiler

CONCLUSIONS

Main blood parameters (hematocryte, hemoglobin and erythrocytes amount) have been assessed within normal limits, as quoted in literature. Moreover, the usage of "FA growth promoter" in chicken feeding induced better hematological indices in experimental treatments, compared to the control one (Lc2); thus, the hematocryte was 2.37-3.05% higher, the hemoglobin 5.74-8.04% higher, while the erythrocytes amount was improved with 3.44-10.34%.

As main conclusion, it could be considered that the usage of "FA bio-growth promoter" induced better health condition in the studied chicken broilers.

REFERENCES

CHELARU, ANA., TEUŞAN, V., CONFEDERAT, MARGARETA, CONDREA, M., 1998 – Some morph-physiological aspects of the broiler's chicken hematogenic marrow - Simpozionul Național "Relansarea Zootehniei Românești- o certitudine a mileniului III", U.A.M.V. Iași.

CHELARU, ANA., CONFEDERAT, MARGARETA, TEUŞAN, V., 1998 - Morphological aspects regarding blood red cells from circulating blood and from different organs to Gallus Domestica species - Simpozionul Naţional "Relansarea Zootehniei Româneşti- o certitudine a mileniului III", U.A.M.V. Iaşi. COCHET, NELLY, 1994 – Les cellules en état de stress – Bio futur., dec.30.

CONSTANTIN, N. și col. 1998 - Fiziologia animalelor domestice vol. I și II. Editura Coral Sanivet, București.

DUNNINGTON, E.A., SIEGEL, P.B., KATANBAF, M.N., GROSS, W.B., 1987 – Response of early and late feathering broilers to various stressors – Poultry Science 66:168-170.

GHERGARIU, S. și colab., 1995 – Patologia nutrițională și metabolică la animale - Editura Medicală Veterinară, București.

GOCIU, MARIANA, PĂUNESCU, GH., COLIȚĂ, D., AVRAM, N., 1985 – Hematologie comparată - Red. Berceanu Şt., Manolescu N. Editura Medicală, București.

GROSS, W.B., 1984 – Differential and total avian blood cell counts by the haemocytometer method – Avian Exotic Practice., 1-2:31-36.

MANOLESCU, N., ALEXANDRU, N., AVRAM, N., BÂRZĂ, H., COMIŞEL, V., 1999 - Tratat de hematologie animală - Vol. I, II. Editura Fundația "România Mâine", București.

MAXWELL, H.M., 1991 - Red cell size and various lung arterial measurements in different strains of domestic fowl - Res. Vet. Sci., 50 (2): 233-239.

PÂRVU, GH., 1992 - Supravegherea nutrițional metabolică a animalelor. Editura Ceres, București. PRICE, S.E.H., DUNNINGTON, E.A., SIEGEL, P.B., 1998 – Hematocrit values in weight-selected and relaxed lines of white rock chickens – Poultry Sci. 77: 1478-1480.

SIMEANU D., VACARU-OPRIŞ I., STAN GH., 2001 – Researches regarding the influence of new bio-

growth promoter (F.A.) on basis of vitamin B₁₂ on the production of meat at the hen broiler. Book of Abstracts of the 52nd Annual Meeting of the European Association for Animal Production, pag. 116, Book of abstracts No. 7, Budapest, Hungary, 26-29 August. SIMEANU D., 2004 – Biostimulatori în alimentația păsărilor. Editura Alfa, Iași