ANALELE UNIVERSITATII DIN ORADEA FASCICULA: ECOTOXICOLOGIE, ZOOTEHNIE SI TEHNOLOGII DE INDUSTRIE ALIMENTARA, VOL. VII, ANUL 7, 2008

THE INFLUENCE OF THE PREPARATION METHOD OF THE PASTRY ON THE QUALITY OF BREAD

L. Ruska*, A.Timar * Rodica Chereji**

*University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048, Oradea; Romania, e-mail: romimplement@yahoo.com

**The Sanitary and Veterinary Office and for The Safety of Aliments Bihor, Oradea,

Abstract

In this research was determined the influence of the method of the preparation of pastry on the quality of bread using the direct preparation method and the indirect preparation method with addition of leaven, prepared from flour obtained of corn harvested in different past years, when the climatic conditions in the period of growth of the plants were different, so there were used two flours obtained from corn cultivated in a drought year and two flours obtained from the corn cultivated in a rainy year. There was determined that these climatic conditions influence in different way the technological features of the pastry obtained from these flours, respectively the finished products obtained from them. In this way, according to the qualitative features of the flours, which is directly influenced by the culture conditions (climatic conditions), the process behaviour during the technological process is different.

Key words: direct method, indirect method, pastry, bread.

INTRODUCTION

Together with the phisical and chemical indexes and the very important panification features, are also the technical features of the corn flour, that must be known and taken in consideration when the pastry is prepared. This operation includes the kneading, fermentation and the rekneading operations. There are used two types of pastry preparations: the direct method (monophase) and the indirect method (poliphase).

MATERIAL AND METHOD

There were used 4 pure kinds of corn, whom features are presented in the table 1, and in the table 2 are presented the features of flours produced from these types of corn.

G1- Alex corn; G2- Partizanka corn; G3- Romulus corn; G4- Partizanka corn.

G1 and G2– corn from the harvest of the year 2004

G3 and G4 – corn from the harvest of the year 2005

The year 2004 was a droughty year, and the year 2005 was a rainy year.

Table 1

The corn features				
Feature	G1	G2	G3	G4
Humidity, %	13,25	12,21	12,32	13,53
Ash, %	1,58	1,18	1,09	0,81
Protein content, %	14,33	14,28	14,93	12,74
Moist gluten %	26,2	27,8	27,6	22,3
Bending of moist gluten, mm	6,5	7	10,5	11,5
Sedimentation index- Zeleny,ml	50	40	52	38
Gluten index, %	41,33	42,95	36,36	27,93
Maltose index,mg/10g	264,56	211,51	196,56	192,56
Falling Number:				
-Falling index	434	383	305	352
Alveographe*:				
-Energy W*10 ⁻⁴ J	68	94	110	107
-Maximum pressure (P), mm	96	85	95	88
-Extensibility index, (G)	8,6	11,6	11,9	12,2
-Extensibility (L), mm	15	27	29	30
- P/L Ratio	6,46	3,12	3,34	2,94
-Elasticity index (Ie),%	0	0	0	0
Consistographe*:				
- Humidity of the sample (H ₂ O),%	11,80	12,20	12,40	12,60
- Maximum pressure (Pr max),mb	2072	3106	2400	2419
- Absorbed water (Wa),%b	53,1	57,7	54,6	54,7
- Water hydration rate (Hydha),%b	50,6	55,2	52,1	52,2
- Absorbed water (Wa),%b14	54,9	59,6	56,4	56,5
- Water hydration rate (Hydha),%b14	52,4	57,0	53,9	54,0
				Table 2

Features of flours

Corns of origin	G1	G2	G3	G4
Feature	F1	F2	F3	F4
Humidity, %	14,60	13,77	14,08	14,42
Ash, %	0,64	0,48	0,55	0,38
Protein content, %	13,25	13,44	13,37	10,60
Moist gluten, %	28,5	29,5	30	23,7
Bending of moist gluten, mm	5	5,5	9,5	8,5
Sedimentation index - Zeleny,ml	48	37	44	36
Gluten index, %	47,73	48,45	41,47	34,30
Maltose index,mg/10g	290,18	253,36	253,45	217,93
Acidity, %	2,5	2,6	2,4	2,3
Falling Number:				
-Falling index	451	394	296	270
Alveographe*:				
-Energy W*10 ⁻⁴ J	104	185	108	223
-Maximum pressure (P), mm	72	81	69	101
-Extensibility index, (G)	15	19,1	15,8	18
-Extensibility(L), mm	46	74	50	65
- P/L Ratio	1,58	1,09	1,39	1,55
-Elasticity index (Ie),%	27,4	44,6	30,7	48
Consistographe*:				
- Humidity of the sample (H ₂ O),%	14,60	13,80	14,10	14,40
- Maximum pressure (Pr max),mb	2807	3045	3072	3117
- Absorbed water (Wa),%b	56,4	57,4	57,6	57,8
-Water hydration rate (Hydha),%b	53,9	54,9	55,1	55,3
- Absorbed water (Wa),%b14	58,2	59,3	59,4	59,6
-Water hydration rate (Hydha),%b14	55,7	56,8	56,9	57,1

The operational program for obtaining the proucts was the following

With the direct method

The pastry was kneaded with spiral blender at low speed for 8 minutes, was blended at high speed for 4 minutes, was left at rest for 20 minutes, was formed, was molded into the pattern, was left to fermentation (final fermentation) for 50 minutes, was baked at 230° C for 35 minutes, was left for cooling into the pattern for 2 hours, was removed from the pattern and cooled for other 2 hours.

With the indirect method

Half of the flour, water and leaven quantity, was blended for 8 minutes at low speed, after which was left in the blender tank for 6 hours and then there was added the rest of the flour, water, leaven and salt; after which it was blended at low speed for 2 minutes and at high speed for 8 minutes, was left to rest for 20 de minutes, was modeled, was set into the pattern, final fermentation for 50 minutes, baking at the temperature of 230° C for 35 minutes, cooling into pattern for 2 hours, removing from pattern and cooling for other 2 hours.

RESULTS AND DISCUSSIONS

The influence of the direct and indirect method on the bread from the F1 flour is presented in the table 3, on the F2 bread is presented in the table 4, on the F3 flour is presented in the table 5, on the F4 flour is presented in the table 6.

Table 3

Sample of the	DIRECT METHOD	INDIRECT METHOD
Volumo	215	200
Volullie	515	290
Porosty	/6	12
Elasticity	94	9/
Acidity	2.6	3.1
Organoleptic	Specific taste and smell of the	Specific taste and smell of the product, with a stronger fragrance, the white vellowish crust core
Tatilig	core with uniform porosity	with uniform porosity

The influence of the direct and indirect method on the bread made of the F1 flour

Table 4

Sample of the	DIRECT METHOD INDIRECT METHOD	
F2 flour		
Volume	330	305
Porosty	78	78
Elasticity	94	97
Acidity	2.6	3.2
Organoleptic	Specific taste and smell of the product, the	Specific taste and smell of the
rating	yellowish golden crust, core with uniform porosity	product, with a stronger fragrance,
		the yellowish golden crust, core with
		uniform porosity

The influence of the direct and indirect method on the bread made of the F2 flour

Table 5

Sample of	DIRECT METHOD	INDIRECT METHOD
the F3 flour		
Volume	330	325
Porosty	78	78
Elasticity	94	98
Acidity	2.5	2.9
Organoleptic rating	Specific taste and smell of the product, the yellowish golden crust with a heavier shade, core with uniform porosity	Specific taste and smell of the product, with a stronger fragrance, the yellowish golden crust with a heavier shade, core with uniform porosity

The influence of the direct and indirect method on the bread made of the F3 flour

Table 6

The influence of the direct and indirect method on the bread made of the F4 flour

Sample of the F4 flour	DIRECT METHOD	INDIRECT METHOD	
Volume	280	310	
Porosty	74	78	
Elasticity	88	96	
Acidity	2.6	3.2	
Organoleptic rating	Specific taste and smell of the product, the yellowish brown	Specific taste and smell of the product, with a stronger fragrance, the	
	crust, core with uniform porosity,	yellowish brown crust, core with	
	slightly frail	uniform porosity	

RESULTS AND DISCUSSIONS

Following the results there can be determined that the higher volume was obtained for the samples realized with the direct method, unless the sample obtaine from the F4 flou, where could be observed an increase of the volume by indirect method. This is explained by the fact that, the F4 flour from which the sample was obtained has a lower gluten content and falling index, and after the prolongation of the fermentation time and the increase of the pastry acidity, the quality of the joints between the glutenic proteins are significantly improved without affecting too much the amilolithic activity. The significant decrease of volume for the samples obtained by the indirect method from the F1 and F2 flour is explained by the inhibition of the amilolithic activity due to the increase of the pastry acidity, as a result of the prolongation of the fermentation time, the amilolithic activity that is decreased for these two types of flour, which can be observed from their very high falling index.

From the perspective of the phisical and chemical parameters, there could be determined an increase of the elasticity for all the products obtained by the indirect method. Also the core of these products was not frail at all. This explains by the fact that at the preparation of the pastry by the indirect method, the fermentation time is considerably protracted, and the unlimited distension processes, of protein deflocculation are produced in a higher rate and the main and secondary fermentation products are formed in higher quantities than by direct method, and as a result, the pastry is matured faster and more completely.

From the organoleptic perspective there could be determined that the products obtained by the indirect method have more pronounced organoleptic features (taste and fragrance) than those obtained by the direct method. This is due to the interaction between the fermentation products, which, because of the increased fermentation time, are produced in much higher quantities.

CONCLUSIONS

The preparation method influences a lot the organoleptic features of the finished product, so that those obtained by the indirect method are much superior from this point of view (taste, fragrance) but if some technological features of the flour are inferior (quality and quantity of the gluten), the finished products obtained by this method are qualitatively much lower (volume, porosity). The technological losses as well are higher are higher for the indirect method, and the possibility of automation by this method is impossible because of the alteration of the viscidity and elasticity features of the pastry which take place after the fermentation.

REFERENCES

- 1. Despina Bordei, 2004, Tehnologia moderna a panificatiei, Agir Bucuresti, p.383.
- 2. Ismail Hakki Boyaci, Phil C. Williams, Hamit Koksel, 2004, A rapid method for the estimation of damaged starch in wheat flours, Journal of Cereal Science, no.39, p.139-145.
- 3. Leonte Mihai, 2005, Tehnologii, utilaje, retete si controlul calitatii in industria de panifictie, patiserie, cofetarie, biscuiti si paste fainoase-fermentarea si prelucrarea aluatului, Ed. Milenium, Piatra Neamt, p.73-81.
- 4. Despina Bordei, Gabriela Bahrim, Vasile Paslaru, Carmen Gasparotti, Alina Elisei, Iuliana Banu, Luminita Ionescu, Georgiana Codina, 2007, Controlul calitatii in industria alimentara – Metode de analiza, Editura Academica Galati, p 313-519