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Abstract

Characteristically, European lamb prices largely fluctuate seasonally. Our research in
lamb trade inspired us to analyze the predictability of price formation. In total, we set up 10
competing models for the prediction of lamb price. Out of 10 variants seasonal decomposition was
the method, which approximated original data most precisely. ARIMA (1,1,0) came to the second,
ARIMA (1,1,1) to the third place. The difference between ARIMA (1,1,0) and ARIMA (1,1,1) is that in
the ARIMA (1,1,0) model we did not take the MA (q) parameter into consideration. The poorest
approximation was produced by the Winter-type exponential smoothing.
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INTRODUCTION

Within the export of sheep products from Hungary, lamb (slaughter
lamb) and live animal export are of determining importance. The market for
live slaughter sheep was the Near East in the 1960s and 1970s, but this has
ceased. Nowadays, the number of animals sold outside of the EU (in
Croatia, Bosnia and Switzerland) is only some ten thousands (Nabradi,
1998). More than 90% of the Hungarian sheep meat export goes to Italy.
Accordingly, the market is quite limited with respect to demand and supply,
selling weight and level of processing (Javor et al., 2001). In addition to the
sole Italian market with a continuous demand for Hungarian lamb, other
solvent European market possibilities meeting the transport regulations
should also be seized. Such markets could be the Spanish and Greek “light”
lamb markets with temporary demand and the French, German or Austrian
“heavy” lamb markets. Due to the price fluctuations, the sheep breeders
frequently have large losses, therefore, the adaptation of production to
seasons and the market research and technological development should all
be improved. Simultaneously with opening to new markets, great attention
should be paid to keeping the Italian market, since Bulgaria and Romania,
which have joined the EU in January 2007, can be strong competitors for
Hungary and also for the Hungarian Sheep Sector (Madai, 2007.) One
condition of maintaining our market position is to improve quality and
uniformity of our products. European lamb prices show great seasonal
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fluctuation, the degree and time of changes varies among the different
countries. Study of the literature and our examination results in lamb trade
inspired us to analyse and study the predictability of prices. In our study, we
have performed a price forecast for Hungarian lamb for the period of 1998-
2006 based on the database of the Sheep Product Council. Our aim was to
provide decision support for farmers, so that they would inseminate and
produce in harmony with the market requirements, thereby, the present
uncertainty of sales would reduce and the profitability of sheep breeding
would improve.

MATHERIAL AND METHODS

Statistical methods include specials ones that advance future
decision-making. The common characteristic of these predictions is that
they are based on so-called time series, i.e. we know the past and present
data of the investigated phenomenon, and we seek to draw conclusions for
the future from them. Predictions differ according to the rate they take the
changes of circumstances into consideration (Balogh — Ertsey, 2003,
Balogh, 2003). During the preparation of our study we investigated and
compared different time series forcasting methods (Seasonal decomposition,
Fourier analysis, Moving average process, Box-Jenkins type time series
models /ARIMA/, Winters” exponential smoothing, Seasonal
decomposition) in relation to their applicability in lamb price prediction. In
the case of seasonal decomposition time series are divided into four varying
parts: the factor following seasonal effect, trend and cycle components and
error terms. Cycle components are significant if time series are of
considerable length.

T,

Given that S, means seasonal fluctuation at a given t point of time, “*

means the trend component, ¢ the cycle component and 1 means random
effects, i.e. error terms. The combination of trend and cycle components

forms the Tc, component.

Additive model:
X, =TC,+8§,+1,
(D

Multiplicative model:
X, =T*C, *S§,*1,
(2)

Estimation performed by the multiplicative variant of seasonal
decomposition proved better than the additive one, therefore we chose this.
In the course of additive estimation the square of the difference between
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original and estimated data far exceeded the one gained by multiplicative
estimation. Based on decomposition, the estimation was prepared by taking
the seasonal index related to the given time period into consideration. We
broke down the trend-cycle effect into trend eftect and cycle effect by fitting
a trend line on the original data series. Then, dividing trend cycle values by
trend values we received the values of cycle components. The values of
cycle components in relation to time period n calculated in this way, were
multiplied with the seasonal index and trend values relating to period n+1,
and thus we received our estimated values for the coming 1 month.

Fourier analysis:

The simple variant of the method is Fourier’s method, which
identifies periodical structures (cycles) in time series. Assume that we have
a given time series in the form of a given f(t) continuous function, where t is
the time factor. Our time series only include finite N pieces of xk elements

for given tk points of time, where f = kAt and k =0, ...,N-1. On the basis of
N pieces of xk elements of the time series we formed a coefficient of N
complex Fn , which was calculated in the following way:

N ulm
F = Zxke N
k=0 ,
Ol
where i =v—1 and e” =cos(x)+isin(x)
“4)

equation is based on Euler’s formula valid for complex numbers.
Then, the discrete Fourier-type formation of the fk elements in our time

_,-kzﬂ

N-1
X, = —ZF e N
series is: NS .
6))
The more popular form of the above formula is:

N-1

x,, — L er—inwntk
n=0 , where “0 is the frequency.
(6)

The essence of Fourier’s transformation is that it maps a continuous
function into the frequency space and breaks it down into the compound of
sinus and cosinus functions. In fact, Fk coefficients serve as the amplitudes
of trigonometrical functions. The EXCEL FFT (Fast Fourier
Transformation) function calculates these discrete Fourier coefficients. By
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this we can analyse the cycles of data series and we can describe them by
function approximation, and we can provide further estimations. By the
application of Discrete Fourier Analysis we reconstructed the original data
series, and then minimized the original and reconstructed difference by a
solver and perfected the approximation. Pre-estimation was prepared in two
ways: by the further calculation of function values and fitting them to the
previous year (Fourier 1) and to the first year (Fourier 2), by shifting. The
first estimated value was approximated to the original values by a solver,
and then we received the pre-estimation of the following data by altered
amplitude and phase. Then the first 2 estimated values were approximated
to the original ones by a solver and we received the third pre-estimated
value by altered amplitude and phase. This process was repeated until we
received 24 estimations.

ARIMA models:

The most sophisticated and complex analysis is available through
ARIMA models developed by Box and Jenkins. ARIMA models postulate
some kind of inner, stochastic coherence among time series data, which
steadily exist, which are demonstrable and likely to be present in the course
of future processes. In this way, as a result of careful analysis, exact
predictions can be expected in these models. Most of random processes,
which occur in practice and show stationary nature, can be well
approximated by ARIMA processes.

General ARIMA models can be characterized by the parameters of
two orders and one degree as follows: ARIMA (p,s,q). In autoregressive
(AR) models the value of t-time point can be taken as the weighted sum of
past values (or their linear combination) and as the sum of uncorrelated
error terms. In the expression of AR (p) p is the order of autoregression. In
moving average models (MA) time series are characterized by of a kind of
moving average of an infinite error term process and the sum of an
uncorrelated error term. In the expression of MA (q) q is the order of
moving average. In integrated (I) ARIMA models we assume time series
with ARMA-type derived series. Derived series are data series formed from
the difference of neighbouring elements. In the expression of I (s) s is the
degree of differentiation. If zero value occurs among p, s and q parameters,
we usually speak about AR(p), ARMA (p,q), ARIMA (p.,s,q), Ma (q)
models (Ketskeméty — 1zso, 2005). On the basis of the time series graphs,
autocorrelation graphs (ACF) and partial autocorrelation functions (PACF)
we can establish the probability of fitting the appropriate order and degree
of successful ARIMA processes. On the grounds of our data we verified the
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probability of ARIMA (1,0,0) model, but we performed our calculations for
further three models: (ARIMA (1,1,0); ARIMA (1,1,1); ARIMA (1,0,1)).

(1- i¢iXi—k )AdXt =1+ iﬁ‘XH)gt

(7
AX, =X, -X,_, AX, =A"X,-AN"X_|

Moving average:

Moving average, produced as the dynamic average of original time
series, is a practically widely used, simple and fast method, which is
occasionally more suitable for the description of basic trends than analytic
trend calculation. Its disadvantage is that it shortens the time series, i.e. as a
result of averaging, the received balanced time series are shorter than the
original ones. Therefore, its use is only advisable in the case of long time
series (Ertsey, 2002). This method is one of the most generally used ways of

XXy X

predictions. Assume ¢ as the studied values of our time series,

where ¥t is the value of time series at t time point. After observing Y we

can define Jua as the prediction of period t+1 by using formula (8):
t—-N+1
xi
fz,l - %

(®)
where N is a given parameter. In the moving average method it is significant
to select N, the number of periods used in the moving average. For the
correct selection of N the index number measuring the preciseness of
prediction, average absolute deviation (MAD) is to be defined. The
definition of MAD requires the introduction of the notion of prediction

. .. . X e
error. Given a prediction relating to ™,

€= (predictedxf)
)
MAD is simply the average of ¢ absolute values. It is reasonable to

select N to have minimal MAD values (Winston, 2003). In our study, the 2
and 3-member moving averages met these requirements.

* is calculated by formula (9):

WINTER'’s exponential smoothing :
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Information in time series provides opportunities for prognostication,
i.e. for the estimation of future expectable values of studied phenomena on
the basis of past experience. Smoothing methods are parts of these
processes, which continuously correct the model on the grounds of
prediction errors, placing higher emphasis on recent information than on
earlier ones (Ertsey, 2002). Out of smoothing methods, we used Winter’s
one, which prognosticated time series applying trends and seasonality as
well. We chose this method as seasonal demand in export markets is
significant in three periods of Hungarian slaughter lamb trade: Easter,
Ferragusto and Christmas. The description of Winter’s method requires two
definitions. Assume c¢ as the number of periods alongside the seasonal

pattern (in the case of monthly data, c= 12). After the observation of *1, 5
is our estimation referring to the seasonal index of period t, L is the
estimated basic level of time series and T means the trend of the period.

The values of L T, and (in this order) are re-calculated for each period

by formula (10)-(12):

X, B
Lag ekl ) gy e pi,
(10) (11)
S, :}/i_i+(l_y)St_c
(12)

where a, B, and y are smoothing constants from 0 to 1(Winston, 2003). The
(10) equation updates our estimation referring to the base of the time series
as the weighted average of the following two quantities:

1. Loa+Ty , which is our starting point estimation before observing *!

X

2. Our observation Sie (without seasonality), which is our starting
point estimation from the actual period.
Equation (11) is calculated as the weighted average of the following two
quantities:
1. Estimation referring to the trend from the given period, i.e. the growth of

the smoothed base from period (t B 1) to period t.

T , which is our previous estimation referring to the trend
The equation (12) updates the seasonality estimation of month t as the
weighted average of the following two quantities:
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(SH ), the latest estimation of the seasonality of period t
xt

L , our estimation from the current month for the seasonality of month t.

Our prediction for the end of period t, for month (t +k ) is:

ft,k = (Lt+th )SH-k—c
(13)
therefore, to get our prediction for the period of (H'k ) we multiply our

t+k) (z, +&1)-1)

starting point estimation for the ( period with the

seasonal index S”’H’) related to the newest (t +k ) period.

RESULTS AND DISCUSSIONS

In total, we set up 10 competing models for the prediction of lamb
price. The models are the following:

Seasonal decomposition

ARIMA (1,1,0)

ARIMA (1,1,1)

ARIMA (1,0,0)

ARIMA (1,0,1)

Moving average (3 elements)
Moving average (2 elements)
Winter-type exponential smoothing
Fourier analysis 1

Fourier analysis 2

For the evaluation of the predictability of models we predicted the
next month, January of 2005 on the basis of the period in January 1998-
December 2004. Then, on the basis of the period in January 1998-January
2005 we predicted February in 2005 and so on until December 2006. The
results of our calculations are presented in Figure 1. The question emerged,
what aspects render a given prediction better than another one. The question
seems to be easy, but the answer is difficult. Therefore we considered the
prediction should not deviate from factual data, i.e. we should be able to
estimate the future values of the given variable as precisely as possible. In
order to ranking the various methods we made the following steps:
We calculated deviations between original and predicted data
Based on the absolute value of deviations, on the grounds of data calculated
for the periods we ranked the methods.
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Figure 1: Results of predictions on lamb price based on 10 competing

models
. mozgd mozgd

djﬁfé%giji';é Fourier 1 Fourier ?f'lhg'? ?f'l'vi/; ?E%’? ?ng a't'la:aggﬁ()Z aiaggﬁgz WINTER EREDETI

januar 63612 63353 627,93 62466 63126 63433 61201 62020 58723 59826 63520
februar 61095 507,53 62814 61471 62615 64294 61892 64165 62520 557,34 57520
mércius 61893 60041 94770 56644 58883 50664 58294 60520 61950 577,95 662,70
aprilis 587,08 62145 66698 63708 64488 63816 62679 61895 62437 55153 657,90
méjus 630,80 52571 58670 63389 64532 66333 637,60 66030 63193 53385 61350
9 jnius 63407 60113 57308 59807 61948 63087 61343 63570 64470 54444 606,27
S jdlius 699,89 60002 64452 59247 61545 61157 60170 60989 62589 58247 68399
augusztus 66077 63608 66373 65621 66480 66338 64609 64513 63459 59657 657,41
szeptember 71751 637,66 67608 63493 65138 66961 64415 67070 64922 65120 669,81
oktéber 67480 64372 6529 64582 66117 66969 65153 66361 67040 64589 708,35
november 69858 64319 67827 67900 68793 70042 67851 68008 67852 66828 72005
december 75204 65248 71612 69024 69921 72080 69529 71420 699,40 70027 77087
januér 76077 66934 67913 73614 73661 75096 73458 74546 73300 71285 75391
februar 70495 62663 69331 72290 73105 76410 73654 76239 74828 66632 65553
mércius 71667 79605 78697 63801 66947 68933 67173 70472 72677 70614 65444
aprilis 69825 687,22 67078 63742 66831 65810 65136 65499 68796 67307 698,25
méjus 63031 82888 707,95 67521 60711 68905 67418 67635 66941 64015 66578
< jinius 66886 70234 69166 64782 67735 67899 66053 68202 67282 64680 68513
< jilius 67996 689,61 68397 66481 690,11 68293 66881 67546 68305 69835 682,23
augusztus 70825 68626 682,82 66278 68003 68668 66078 68368 67771 69894 759,71
szeptember 76520 69893 70450 73082 73962 74073 71977 72097 70002 75318 768,39
oktober 78825 72587 70885 73097 74873 77037 74270 76405 73678 757,95 756,97
november 78305 74725 72613 73087 74481 76475 74267 76268 76169 77693 689,90
december 80553 73637 73328 671,96 70390 71314 69819 72344 73342 80255 674,68

Source: own calculations on the basis of the database from the Association of Sheep Products

1.We totalled up these ranks and we could conclude that seasonal

decomposition proved to be the method, which came first 8 times out of 24

occasions and came second in total 4 times out of 24 occasions. Fourier’s 1
(6 times) and the Winter-type exponential smoothing (8 times) came last

most of the time.

2.From the totalled ranks we calculated the average ranks of the methods.

The results are presented in Figure 1.

Figure 2: Average ranks of prediction methods
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Source: own calculations on the basis of the database from the Association of Sheep
Products
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Summing up we can conclude that out of 10 variants, seasonal
decomposition was the method, which approximated original data most
precisely. ARIMA (1,1,0) came to the second, ARIMA (1,1,1) to the third
place. The difference between ARIMA (1,1,0) and ARIMA (1,1,1) is that in
the ARIMA (1,1,0) model we did not take the MA (q) parameter into
consideration. The poorest approximation was produced by the Winter-type
exponential smoothing.

CONCLUSIONS

On the basis of the 10 types of prediction models we can state that
seasonal decomposition proved to be the most suitable for the prediction of
lamb prices, followed by ARIMA (1,1,0) and ARIMA (1,1,1) models. The
most unpunctual predictions were given by Fourier’s 1. model and by the
Winter-type exponential smoothing.
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