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 Abstract 

Characteristically, European lamb prices largely fluctuate seasonally. Our research in 
lamb trade inspired us to analyze the predictability of price formation. In total, we set up 10 
competing models for the prediction of lamb price. Out of 10 variants seasonal decomposition was 
the method, which approximated original data most precisely. ARIMA (1,1,0) came to the second, 
ARIMA (1,1,1) to the third place. The difference between ARIMA (1,1,0) and ARIMA (1,1,1) is that in 
the ARIMA (1,1,0) model we did not take the MA (q) parameter into consideration. The poorest 
approximation was produced by the Winter-type exponential smoothing.   
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INTRODUCTION 
 

Within the export of sheep products from Hungary, lamb (slaughter 
lamb) and live animal export are of determining importance. The market for 
live slaughter sheep was the Near East in the 1960s and 1970s, but this has 
ceased. Nowadays, the number of animals sold outside of the EU (in 
Croatia, Bosnia and Switzerland) is only some ten thousands (Nábrádi, 
1998). More than 90% of the Hungarian sheep meat export goes to Italy. 
Accordingly, the market is quite limited with respect to demand and supply, 
selling weight and level of processing (Jávor et al., 2001). In addition to the 
sole Italian market with a continuous demand for Hungarian lamb, other 
solvent European market possibilities meeting the transport regulations 
should also be seized. Such markets could be the Spanish and Greek ”light” 
lamb markets with temporary demand and the French, German or Austrian 
”heavy” lamb markets. Due to the price fluctuations, the sheep breeders 
frequently have large losses, therefore, the adaptation of production to 
seasons and the market research and technological development should all 
be improved. Simultaneously with opening to new markets, great attention 
should be paid to keeping the Italian market, since Bulgaria and Romania, 
which have joined the EU in January 2007, can be strong competitors for 
Hungary and also for the Hungarian Sheep Sector (Madai, 2007.) One 
condition of maintaining our market position is to improve quality and 
uniformity of our products. European lamb prices show great seasonal 
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fluctuation, the degree and time of changes varies among the different 
countries. Study of the literature and our examination results in lamb trade 
inspired us to analyse and study the predictability of prices. In our study, we 
have performed a price forecast for Hungarian lamb for the period of 1998-
2006 based on the database of the Sheep Product Council. Our aim was to 
provide decision support for farmers, so that they would inseminate and 
produce in harmony with the market requirements, thereby, the present 
uncertainty of sales would reduce and the profitability of sheep breeding 
would improve. 
 
MATHERIAL AND METHODS 

 
Statistical methods include specials ones that advance future 

decision-making. The common characteristic of these predictions is that 
they are based on so-called time series, i.e. we know the past and present 
data of the investigated phenomenon, and we seek to draw conclusions for 
the future from them. Predictions differ according to the rate they take the 
changes of circumstances into consideration  (Balogh – Ertsey, 2003, 
Balogh, 2003). During the preparation of our study we investigated and 
compared different time series forcasting methods (Seasonal decomposition, 
Fourier analysis, Moving average process, Box-Jenkins type time series 
models /ARIMA/, Winters’ exponential smoothing, Seasonal 
decomposition) in relation to their applicability in lamb price prediction. In 
the case of seasonal decomposition time series are divided into four varying 
parts: the factor following seasonal effect, trend and cycle components and 
error terms. Cycle components are significant if time series are of 
considerable length.  

Given that tS  means seasonal fluctuation at a given t point of time, tT  

means the trend component, tC  the cycle component and tI  means random 
effects, i.e. error terms. The combination of trend and cycle components 

forms the tTC  component.  
Additive model: 

tttt ISTCX ++=          
  (1) 
Multiplicative model: 

tttt ISCTX ***=         
  (2) 

Estimation performed by the multiplicative variant of seasonal 
decomposition proved better than the additive one, therefore we chose this. 
In the course of additive estimation the square of the difference between 
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original and estimated data far exceeded the one gained by multiplicative 
estimation. Based on decomposition, the estimation was prepared by taking 
the seasonal index related to the given time period into consideration. We 
broke down the trend-cycle effect into trend effect and cycle effect by fitting 
a trend line on the original data series. Then, dividing trend cycle values by 
trend values we received the values of cycle components. The values of 
cycle components in relation to time period n calculated in this way, were 
multiplied with the seasonal index and trend values relating to period n+1, 
and thus we received our estimated values for the coming 1 month.  
 
Fourier analysis: 
 

The simple variant of the method is Fourier’s method, which 
identifies periodical structures (cycles) in time series. Assume that we have 
a given time series in the form of a given f(t) continuous function, where t is 
the time factor. Our time series only include finite N pieces of xk elements 

for given tk points of time, where tktk Δ= and k =0, …,N-1. On the basis of 
N pieces of xk  elements of the time series we formed a coefficient of N 
complex Fn , which was calculated in the following way:  
 

∑
−

=

=
1

0

2N

k

N
nik

kn exF
π

,         
  (3) 

where 1−=i , and )sin()cos( xixeix +=      
  (4) 
equation is based on Euler’s formula valid for complex numbers.  
Then, the discrete Fourier-type formation of the fk  elements in our time 

series is: 
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The more popular form of the above formula is:  
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, where 0ω  is the frequency.     
  (6) 

The essence of Fourier’s transformation is that it maps a continuous 
function into the frequency space and breaks it down into the compound of 
sinus and cosinus functions.  In fact, Fk  coefficients serve as the amplitudes 
of trigonometrical functions. The EXCEL FFT (Fast Fourier 
Transformation) function calculates these discrete Fourier coefficients. By 
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this we can analyse the cycles of data series and we can describe them by 
function approximation, and we can provide further estimations. By the 
application of Discrete Fourier Analysis we reconstructed the original data 
series, and then minimized the original and reconstructed difference by a 
solver and perfected the approximation. Pre-estimation was prepared in two 
ways: by the further calculation of function values and fitting them to the 
previous year (Fourier 1) and to the first year (Fourier 2), by shifting. The 
first estimated value was approximated to the original values by a solver, 
and then we received the pre-estimation of the following data by altered 
amplitude and phase. Then the first 2 estimated values were approximated 
to the original ones by a solver and we received the third pre-estimated 
value by altered amplitude and phase. This process was repeated until we 
received 24 estimations.  
 
ARIMA models: 
 

The most sophisticated and complex analysis is available through 
ARIMA models developed by Box and Jenkins. ARIMA models postulate 
some kind of inner, stochastic coherence among time series data, which 
steadily exist, which are demonstrable and likely to be present in the course 
of future processes. In this way, as a result of careful analysis, exact 
predictions can be expected in these models. Most of random processes, 
which occur in practice and show stationary nature, can be well 
approximated by ARIMA processes.  

General ARIMA models can be characterized by the parameters of 
two orders and one degree as follows: ARIMA (p,s,q). In autoregressive 
(AR) models the value of t-time point can be taken as the weighted sum of 
past values (or their linear combination) and as the sum of uncorrelated 
error terms. In the expression of AR (p) p is the order of autoregression. In 
moving average models (MA) time series are characterized by of a kind of 
moving average of an infinite error term process and the sum of an 
uncorrelated error term. In the expression of MA (q) q is the order of 
moving average. In integrated (I) ARIMA models we assume time series 
with ARMA-type derived series. Derived series are data series formed from 
the difference of neighbouring elements. In the expression of I (s) s is the 
degree of differentiation. If zero value occurs among p, s and q parameters, 
we usually speak about AR(p), ARMA (p,q), ARIMA (p,s,q), Ma (q) 
models (Ketskeméty – Izsó, 2005). On the basis of the time series graphs, 
autocorrelation graphs (ACF) and partial autocorrelation functions (PACF) 
we can establish the probability of fitting the appropriate order and degree 
of successful ARIMA processes. On the grounds of our data we verified the 
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probability of ARIMA (1,0,0) model, but we performed our calculations for 
further three models: (ARIMA (1,1,0); ARIMA (1,1,1); ARIMA (1,0,1)). 
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Moving average: 
 

Moving average, produced as the dynamic average of original time 
series, is a practically widely used, simple and fast method, which is 
occasionally more suitable for the description of basic trends than analytic 
trend calculation. Its disadvantage is that it shortens the time series, i.e. as a 
result of averaging, the received balanced time series are shorter than the 
original ones.  Therefore, its use is only advisable in the case of long time 
series (Ertsey, 2002). This method is one of the most generally used ways of 

predictions. Assume tí xxx ....., 2  as the studied values of our time series, 

where tx  is the value of time series at t time point.  After observing  tx  we 

can define 1,tf  as the prediction of period t+1 by using formula (8): 
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  (8) 
where N is a given parameter. In the moving average method it is significant 
to select N, the number of periods used in the moving average. For the 
correct selection of N the index number measuring the preciseness of 
prediction, average absolute deviation (MAD) is to be defined. The 
definition of MAD requires the introduction of the notion of prediction 

error. Given a prediction relating to tx , te  is calculated by formula (9):  
te  = tx - (predicted tx )         

   (9) 

MAD is simply the average of te  absolute values. It is reasonable to 
select N to have minimal MAD values (Winston, 2003). In our study, the 2 
and 3-member moving averages met these requirements.  
 
WINTER’s exponential smoothing :  
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Information in time series provides opportunities for prognostication, 
i.e. for the estimation of future expectable values of studied phenomena on 
the basis of past experience. Smoothing methods are parts of these 
processes, which continuously correct the model on the grounds of 
prediction errors, placing higher emphasis on recent information than on 
earlier ones (Ertsey, 2002). Out of smoothing methods, we used Winter’s 
one, which prognosticated time series applying trends and seasonality as 
well. We chose this method as seasonal demand in export markets is 
significant in three periods of Hungarian slaughter lamb trade: Easter, 
Ferragusto and Christmas. The description of Winter’s method requires two 
definitions. Assume c as the number of periods alongside the seasonal 

pattern (in the case of monthly data, c= 12). After the observation of 1x , ts  

is our estimation referring to the seasonal index of period t,  tL  is the 

estimated basic level of time series and tT  means the trend of the period. 

The values of tL  tT  and ts  (in this order) are re-calculated for each period 
by formula (10)-(12):  

( )( )111 −−
−

+−+= tt
ct

t
t TL

S
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,  ( ) ( ) 11 1 −− −+−= tttt TLLT ββ   
 (10)                                                           (11) 
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where α, β, and γ are smoothing constants from 0 to 1(Winston, 2003). The 
(10) equation updates our estimation referring to the base of the time series 
as the weighted average of the following two quantities:   

      1. 1-t1 T  +−tL , which is our starting point estimation before observing 1x  

      2.  Our observation ct

t

S
x

− (without seasonality), which is our starting 
point estimation from the actual period.  
Equation (11) is calculated as the weighted average of the following two 
quantities:  
1. Estimation referring to the trend from the given period, i.e. the growth of 
the smoothed base from period  ( )1−t  to period t.  

1−tT , which is our previous estimation referring to the trend  
The equation (12) updates the seasonality estimation of month t as the 
weighted average of the following two quantities: 
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( )cts − , the latest estimation of the seasonality of period t  

t

t

L
x

, our estimation from the current month for the seasonality of month t.  
Our prediction for the end of period t, for month ( )kt + is:  

( ) cktttkt skTLf −++=,          
  (13) 
therefore, to get our prediction for the period of  ( )kt +  we multiply our 

starting point estimation for the ( )kt + period  ( )( )tkTL tt −+  with the 

seasonal index ( )ckts −+  related to the newest ( )kt +  period.  
 
RESULTS AND DISCUSSIONS 
 

In total, we set up 10 competing models for the prediction of lamb 
price. The models are the following:  
 
Seasonal decomposition 
ARIMA (1,1,0) 
ARIMA (1,1,1) 
ARIMA (1,0,0) 
ARIMA (1,0,1) 
Moving average (3 elements) 
Moving average (2 elements) 
Winter-type exponential smoothing 
Fourier analysis 1  
Fourier analysis 2 
 

For the evaluation of the predictability of models we predicted the 
next month, January of 2005 on the basis of the period in January 1998-
December 2004. Then, on the basis of the period in January 1998-January 
2005 we predicted February in 2005 and so on until December 2006. The 
results of our calculations are presented in Figure 1. The question emerged, 
what aspects render a given prediction better than another one. The question 
seems to be easy, but the answer is difficult. Therefore we considered the 
prediction should not deviate from factual data, i.e. we should be able to 
estimate the future values of the given variable as precisely as possible. In 
order to ranking the various methods we made the following steps:  
We calculated deviations between original and predicted data  
Based on the absolute value of deviations, on the grounds of data calculated 
for the periods we ranked the methods.  
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Figure 1: Results of predictions on lamb price based on 10 competing 
models 

 

január 636,12 638,53 627,93 624,66 631,26 634,33 612,91 620,20 587,23 598,26 635,20
február 610,95 597,53 628,14 614,71 626,15 642,94 618,92 641,65 625,20 557,34 575,20
március 618,93 600,41 947,70 566,44 588,83 596,64 582,94 605,20 619,50 577,95 662,70
április 587,08 621,45 666,98 637,08 644,88 638,16 626,79 618,95 624,37 551,53 657,90
május 630,80 525,71 586,79 633,89 645,32 663,33 637,69 660,30 631,93 533,85 613,50
június 634,07 601,13 573,08 598,07 619,48 630,87 613,43 635,70 644,70 544,44 606,27
július 699,89 600,02 644,52 592,47 615,45 611,57 601,70 609,89 625,89 582,47 683,99
augusztus 669,77 636,08 663,73 656,21 664,80 663,38 646,09 645,13 634,59 596,57 657,41
szeptember 717,51 637,66 676,08 634,93 651,38 669,61 644,15 670,70 649,22 651,20 669,81
október 674,89 643,72 652,96 645,82 661,17 669,69 651,53 663,61 670,40 645,89 708,35
november 698,58 643,19 678,27 679,00 687,93 700,42 678,51 689,08 678,52 668,28 720,05
december 752,04 652,48 716,12 690,24 699,21 720,80 695,29 714,20 699,40 700,27 770,87
január 760,77 669,34 679,13 736,14 736,61 759,96 734,58 745,46 733,09 712,85 753,91
február 704,95 626,63 693,31 722,90 731,05 764,10 736,54 762,39 748,28 666,32 655,53
március 716,67 796,05 786,97 638,01 669,47 689,33 671,73 704,72 726,77 706,14 654,44
április 698,25 687,22 670,78 637,42 668,31 658,10 651,36 654,99 687,96 673,07 698,25
május 630,31 828,88 707,95 675,21 697,11 689,05 674,18 676,35 669,41 640,15 665,78
június 668,86 702,34 691,66 647,82 677,35 678,99 660,53 682,02 672,82 646,80 685,13
július 679,96 689,61 683,97 664,81 690,11 682,93 668,81 675,46 683,05 698,35 682,23
augusztus 708,25 686,26 682,82 662,78 689,03 686,68 669,78 683,68 677,71 698,94 759,71
szeptember 765,20 698,93 704,50 730,92 739,62 740,73 719,77 720,97 709,02 753,18 768,39
október 788,25 725,87 708,85 739,97 748,73 770,37 742,70 764,05 736,78 757,95 756,97
november 783,95 747,25 726,13 730,87 744,81 764,75 742,67 762,68 761,69 776,93 689,90
december 805,53 736,37 733,28 671,96 703,90 713,14 698,19 723,44 738,42 802,55 674,68

20
06

mozgó 
átlag (3 
tagú)

WINTER EREDETI 

20
05

ARIMA 
(1,1,1)

ARIMA 
(1,0,0)

ARIMA 
(1,0,1)

mozgó 
átlag (2 
tagú)

Szezonális 
dekompozíció Fourier 1 Fourier ARIMA 

(1,1,0)

 
 
Source: own calculations on the basis of the database from the Association of Sheep Products 
 
1.We totalled up these ranks and we could conclude that seasonal 
decomposition proved to be the method, which came first 8 times out of 24 
occasions and came second in total 4 times out of 24 occasions. Fourier’s 1  
 (6 times) and the Winter-type exponential smoothing (8 times) came last 
most of the time.  
2.From the totalled ranks we calculated the average ranks of the methods. 
The results are presented in Figure 1. 

 Figure 2: Average ranks of prediction methods 
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Summing up we can conclude that out of 10 variants, seasonal 
decomposition was the method, which approximated original data most 
precisely. ARIMA (1,1,0) came to the second, ARIMA (1,1,1) to the third 
place. The difference between ARIMA (1,1,0) and ARIMA (1,1,1) is that in 
the ARIMA (1,1,0) model we did not take the MA (q) parameter into 
consideration. The poorest approximation was produced by the Winter-type 
exponential smoothing.  
 

CONCLUSIONS 
 

On the basis of the 10 types of prediction models we can state that 
seasonal decomposition proved to be the most suitable for the prediction of 
lamb prices, followed by ARIMA (1,1,0) and ARIMA (1,1,1) models. The 
most unpunctual predictions were given by Fourier’s 1. model and by the 
Winter-type exponential smoothing.  
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