DISCIPLINE DESCRIPTION

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	FORESTRY AND FORESTRY ENGINEERING
1.4 Field of study	FORESTRY
1.5 Cycle of study	LICENSE
1.6 Study programme/Qualification	FORESTRY/ENGINNEER

2. Information on the discipline

2.1 Name of discipline			REMOTE SENSING				
2.2 Course holder		Ş.L. Dr. Ing. BODOG MARINELA					
2.3 Seminar/Laborator	Ş.L. Dr. Ing. BODOG MARINELA						
holder							
2.4 Year of study II	2.5 Seme	ster IV	2.6 Type of e	valuation	E	2.7 Regime of discipline	О

⁽C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

or rotal estimate time (modes per semester of diddette detrivit	105)				
3.1 Number of hours per week out of which:	4	course	2	laboratory	2
3.4 Total hours in the curriculum out of which:		course	28	laboratory	14
Time allotment					Hours
Study assisted by manual, course support, bibliography and notes	3				9
Additional documentation in the library/ on specialised electronic platforms and in the field					8
Preparation of seminars/laboratories/ topics/reports, portfolios and essays					8
Tutorship					8
Examinations					20
Other activities					18
3.7 Total hours of individual study 33					•

3.7 Total hours of individual study	33
3.9 Total hours per semester	113
3.10 Number of credits	3

4. Prerequisites (where appropriate)

4.1 curriculum	Topography, Soil science
4.2 competences	Fundamental notions

5. Conditions (where appropriate)

e containons (where appropriate	/
5.1. related to course	Students will not attend lectures, seminars / labs with open mobile phones. Also, telephone conversations during the course will not be tolerated, nor will the students leave the classroom in order to take personal telephone calls; Delay of students in the course and seminar / laboratory will not be
	tolerated as it proves to be disruptive to the educational process;
5.2. related to seminar/laboratory/ project	Rules of conduct of students in the remote sensing laboratory are those expressed in the course. The learning conditions are: active and interactive, practical-applicative, in a heuristic, problematic spirit; Laboratory with material endowments specific to remote sensing: orthophoto planes (frames), computers, special glasses, etc.

6. Specific competences acquired

		C1.1 Theoretical and practical description of forestry processes, characteristic of the hunting, salmons and biodiversity
Professional competences		C2.1 The technical basis for forest production process
	eter	C3.1 Defining environmental risk situations, methods, techniques and procedures that can be used
	du l	in ecological restoration of ecosystems
	00	C4.1 Description of the methods used to protect forest ecosystems and applied technologies to
	ıal	increase their productivity
	ion	C1.2 Explanation and argumentation different systems of sustainable forest management
	SSS	C2.2 Explanation and interpretation of phenomena and processes associated domain forestry
	Jo.	production
	Pı	C4.2 Explain the techniques adopted to reach internal analysis of forest ecosystems
		CT1. Developing and following a schedule and achieve their tasks with professionalism and rigor.
	al ce	CT2. Applying effective communication techniques in specific activities of teamwork; playing a
	ers	role within the team and the principles of division of labour.
	Transversal competences	CT3. Self-objective need for continuous training in order to adapt and meet the constant demands
	rar	of economic development; use of information and communication techniques and an international
	T 3	language.

7. Objectives of discipline (coming from the specific competences acquired)

· Objectives of discipline (con	Objectives of discipline (coming from the specific competences acquired)			
7.1 General objective	Acquisition of data and information remotely, on the environment or on land,			
	the ocean and the atmosphere. Devices used for this purpose, essentially			
	sensors record the electromagnetic waves emitted, reflected or broadcast of			
	bodies, objects and phenomena pursued. The specific measurements of this			
	radiation, they become carriers of information, are deducted properties and			
	characteristics of objects and phenomena of nature.			
7.2 Specific objectives	Research in airspace or outer surface of the Earth, other planets and satellites			
•	and interplanetary space you. The information obtained is of particular			
	importance to many fields such as agriculture, forestry, geology, hydrology,			
	cartography, etc.			
	Remote sensing has had major themes and achieved outstanding results in			
	evaluating the Earth's natural resources, environment deteriorating, in			
	meteorology, etc. Determination techniques providing photographic images			
	or non-photographic, taken away, from the simplest to the most complex.			
	Getting central images of the objects to be measured and then extracting from			
	these photos such as orthogonal projections: plans, maps, elevations, sections			
	etc. graphically or numerically.			

8. Content*/

8.1 Course	Methods of teaching	No. of
General, basic elements, electromagnetic radiation, electromagnetic spectrum. Radiation in nature	Systematic exposure with video projector, problematization	hours/Remarks 2
The exchange of energy in nature, the principles of remote sensing, image sensor, means of remote sensing, remote sensing steps	Systematic exposure with video projector, problematization	2
Q-GIS Interpretation	Systematic exposure with video projector, problematization	2
Getting digital and digitized image	Systematic exposure with video projector, problematization	2
Stereo-photogrammetry: direct and indirect stereoscopic vision	Systematic exposure with video projector, problematization	2
Stereo-photogrammetry: parallax and stereoscopic measurement	Systematic exposure with video projector, problematization	2

Applications of photo-interpretation in the forestry sector: Metric measurements for forestry purposes, determinations on individual trees	Systematic exposure with video projector, problematization	4
Applications of photo-interpretation in the forestry sector: photogrammetric measurements on stands	Systematic exposure with video projector, problematization	2
Forest cadastre	Systematic exposure with video projector, problematization	2
Determination of areas by numerical methods	Systematic exposure with video projector, problematization	2
Determination of areas with graphical and mechanical methods	Systematic exposure with video projector, problematization	2
The division of surfaces by graphical method	Systematic exposure with video projector, problematization	2
The division surfaces and automatic numerical method	Systematic exposure with video projector, problematization	2

8.3 Laboratory	Methods of teaching	No. of hours/Remarks
Familiarization with the new terms	In the first hour lab will be a presentation by the teacher coordinator of the laboratory, the specific concepts related to remote sensing safety. Interactive	
Spectral signatures	Systematic presentation, demonstration, problematization	1
Basic image analysis	Systematic presentation, demonstration, problematization	1
Rectifying basic images	Systematic presentation, demonstration, problematization	2
Orthophotoplan corrections	Systematic presentation, demonstration, problematization	2
Image classification	Systematic presentation, demonstration, problematization	2
Application programming interface. Satellite-based hyperspectral use of infested forest identification	Systematic presentation, demonstration, problematization	4

Bibliografie:

- 1. Iacobescu O., 2004 Fotogrametrie și teledetecție, Editura Universității din Suceava
- 2. Jensen, John R., 2005, Introductory Digital Image Processing, 3rd Ed., Upper Prentice Hall.
- 3. Jensen, J.R. (2007) Remote Sensing of the Environment: An Earth Resource Perspective, 2nd Ed., Prentice Hall.
- 4. Lillesand, T., Kiefer, R., Chipman, J. (2004) Remote sensing and image interpretation, J. Wiley and Sons, London.
- 5. Mihai, B.A. (2007) Teledetecție. Introducere în procesarea digitală a imaginilor., Ed. Universității din București
- 6. Mihai, B. A. (2009) Teledetectie. Notiuni si principii fundamentale, Editura Universitatii din Bucuresti
- 7. Wan Bakx (2008) Principles of remote sensing. Module 2. Presentations, ITC Enschede.
- 8. Sabău N.C., Crainic G. C., 2007 Teledetecție și cadastru forestier, Editura Universității din Oradea
- 9. Sabău N.C., Crainic G. C., 2007 *Aplicații ale teledetecției în cadastru*, Editura Universității din Oradea

Websites (tutorials)

NASA – Goddard Space Flight Centre. The Remote Sensing Tutorial, http://rst.gsfc.nasa.gov/ http://ccrs.nrcan.gc.ca/resource/tutor/fundam/index e.php

GIS development.Remote sensing tutorial, http://www.gisdevelopment.net/tutorials/tuman008.htm CRISP Singapore. Remote sensing tutorial, http://www.crisp.nus.edu.sg/~research/tutorial/rsmain.htm The Remote sensing tutorial, http://www.fas.org/irp/imint/docs/rst/index.html

Chesapeake Bay and Mid Atlantic from Space. Remote sensing tutorial. Glossary,

http://chesapeake.towson.edu/glossary.asp

Aerial photography and remote sensing (tutorial),

http://www.colorado.edu/geography/gcraft/notes/remote/remote_f.html

NASA Landsat programme page, http://geo.arc.nasa.gov/sge/landsat/landsat.html

Global Land Cover Facility. University of Maryland (Landsat data source),

http://glcf.umiacs.umd.edu/data/landsat/

NASA Landsat page , http://landsat.gsfc.nasa.gov/education/tutorials.html

Landsat user's handbook (manualul Landsat), http://landsathandbook.gsfc.nasa.gov/handbook.html

Landsat USGS page, http://landsat.usgs.gov/

Center for Earth Resources Observations and Science, http://glovis.usgs.gov

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

Course content is adapted to meet the requirements of the labour market, being accepted by epistemic communities (who study the land use of an area as it should take place in the sciences), social partners, professional associations and employers in the license forestry. Course contents specialization is reflected in the curricula of Forestry and other universities in Romania who have accredited this specialization, knowing the basics is an urgent requirement employer in Forestry and Forestry Engineering.

10. Evaluation

Type of	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the
activity		methods	final grade
10.4 Course	The exam consists of a test with 2 theoretical	Exam writing	70%
	questions and 2 problems		
10.6	Report / project on an imposed topic made in QGIS	Oral	
Laboratory	Discussion on the report / project	presentation	30%

10.8 Minimum standard of performance

Implementation and / or coordination of sustainable forestry management techniques and using specific means; foundation and reasoning methods, and procedures used. Development and implementation of technical projects and processes. Making diagnoses on the needs of ecological restoration, and technology standards available options regarding its application. Diagnosing the environmental and economic risks of forest ecosystems, defining their objectives regarding the protection and improvement in complex programs.

Date of completion	Signature of course holder	Signature of laboratory holder
01.10.2020	PhD eng. lect. Marinela Bodog e-mail: marinelabodog@gmail.com	PhD eng. Lect. Marinela Bodog e-mail: marinelabodog@gmail.com
		Signature of the Head of Department*
		PhD. Prof. eng. Timofte Adrian
		Dean Signature*

^{*} The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

PhD. Prof. eng. Chereji Ioan	
*Name, first name, academic degree and contact details (e-mail, web page, etc) of the academic entity beneficiary of the Discipline Outline_will be specified.	