DISCIPLINE DESCRIPTION

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	Food Engineering
1.4 Field of study	Food Engineering
1.5 Cycle of study	BACHELOR
1.6 Study programme/Qualification	Control and Expertise of Food Products / Engineer

2. Information on the discipline

2. Information on the discip	Piiiic					
2.1 Name of discipline	Phy	Physics I				
2.2 Course holder	Lect	Lecturer Phys. Eng. Alin Cristian TEUŞDEA, PhD				
2.3 Seminar/Laboratory/Pro	oject Lecturer Phys. Eng. Alin Cristian TEUŞDEA, PhD					
holder						
2.4 Year of study 1 2.	.5 Semester	1	2.6 Type of evaluation	Ex	2.7 Regime of discipline	C

⁽C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

2.137 1 01 1					0.1.0.10	- 1
3.1 Number of hours per week	2	out of	2	out of which 3.3	0/ 2 /0	
		which:		seminar/laboratory/project		
		3.2				
		course				
3.4 Total hours in the curriculum	56	out of	28	out of which 3.6	0/28/0	
		which:		seminar/laboratory/project		
		3.5		Selilian, in estately, preject		
		course				
Time allotment						
Study assisted by manual, course support, bibliography and notes						20
Additional documentation in the library/ on specialised electronic platforms and in the field						14
Preparation of seminars/laboratories/ topics/reports, portfolios and essays						24
Tutorship						0
Examinations						6
Other activities						0

3.7 Total hours of individual study	64
3.9 Total hours per semester	120
3.10 Number of credits	5

4. Prerequisites (where appropriate)

4.1 curriculum	-
4.2 competences	-

5. Conditions (where appropriate)

5.1. related to course	 The course is based on oral presentation with video projector, notebook with MS PowerPoint software, Adobe Reader, Internet access. Students can ask questions and have the obligation to follow the course schedule. During the course students will not be present with open mobile phones.
5.2. related to seminar/laboratory/ project	 For practical work, it is mandatory to prepare (study) each practical work a week before.

- Each student will conduct an individual activity with the equipment and laboratory materials that will be completed by performing the calculations described in the laboratory guide.
 - During laboratory work, students are not allowed to make telephone calls within the laboratory.

6. Spec	cific competences acquired
Professional competences	 Identify and appropriately use the main laws and physical principles in a given context: Apply physics principles and laws in solving theoretical or practical problems under qualified assistance. To develop the ability to explain phenomena in food engineering as a consequence of applying physics laws in the context of the complexity of food systems To develop the ability to use lab techniques necessary for food engineering designing experimental design, obtaining experimental data, analyzing and interpreting them and formulating conclusions To apply the knowledge in the physics field of both in concrete situations in related fields and in experiments, using standard laboratory equipment.
Transversal competences	 To demonstrate preoccupation for professional development through the use of practical thinking skills, engineering To participate in scientific projects Acquiring / completing the information needed to assimilate the content of disciplines in food engineering

7. Objectives of discipline (coming from the specific competences acquired)

7. Objectives of discipline (coming from the specific competences acquired)			
7.1 General objective	 Acquiring specific the language and the notions related to physical phenomena that arise in the field of food engineering. 		
7.2 Specific objectives	 Acquiring specific language Acquiring insights regarding the physical phenomena that arise in the field of food engineering Interpretation of physics equations and their correct application in experiments Performing experimental measurements, processing and interpreting the results Identifying applications specific to the field of food engineering in which the physical phenomena were studied 		

8. Content*/

8.1 Course	Methods of teaching	No. of hours/Remarks
Physical sizes and their measurement.	systematic exposure, conversation, problem- solving,	2
Error evaluation, results processing and evaluation.	systematic exposure,	2

	conversation, problem-	
	solving,	
Mechanics - general problems. Vector computation.	systematic exposure,	2
	conversation, problem-solving,	
Kinematics. Speed and acceleration. The circular	systematic exposure,	2
motion. The relative movement of the material point.	conversation, problem-	2
motion. The relative movement of the material point.	solving,	
Dynamics and static of the material point.	systematic exposure,	2
The principles of dynamics. Movement of the material	conversation, problem-	
point under the action of forces. The kinetic moment	solving,	
theorem. The Law of Kinetic Moment Conservation.		
Mechanical work and power. Kinetic energy. Potential		
energy. Total energy. The Law of Total Energy		
Conservation		
Oscillations and waves.	systematic exposure,	2
Dynamics of harmonic oscillatory motion. Composition	conversation, problem-	
of harmonic oscillations. Mechanical waves.	solving,	
Hygrothermal elements	systematic exposure,	2
The heat. Temperature. Thermal flow. Thermal Flow	conversation, problem-	
Density. Heat exchanges through convection and	solving,	
radiation. Practical relationships of evaluation. Heat		
exchanges through conduction.		
Fourier law for heat conduction. Unique conditions for	systematic exposure,	2
the Fourier conductive heat transfer equation. Static	conversation, problem- solving,	
conductive heat transfer through structures without	solving,	
internal heat sources. Thermal transfer through a		
structure with infinite planar parallel surfaces. Unique		
contact conditions in planar-parallel multilayer structures.		
Thermodiffusion of water vapor in stationary	systematic exposure,	2
hygrothermal regime through a homogeneous planar-	conversation, problem-	2
parallel multilayer structure.	solving,	
Simplifying hypotheses for the mathematical modeling	systematic exposure,	2
of the water vapor diffusion phenomenon. The practical	conversation, problem-	4
mathematical model.	solving,	
Elements of atmospheric physics	systematic exposure,	2
Overview of the Earth's Atmosphere. Composition of	conversation, problem-	-
atmospheric air. The importance of the main	solving,	
components of the air. Atmospheric impurities.		
The vertical structure of the atmosphere. Atmospheric	systematic exposure,	2
parameters. Air temperature. Air humidity.	conversation, problem-	
	solving,	
Geometric Optics	systematic exposure,	2
Introduction. The Laws of Reflection and Refraction. The	conversation, problem-	
principle of Fermat. Optical prisms.	solving,	
Ideal Optical Systems - General Rules. Cardinal points	systematic exposure, conversation, problem-	2
and planes. Composition of centered optical systems.	solving,	
Obs: * Oral exposures, videoprojector presentations,	<i>S</i> ,	
simulations		
Bibliography		
1. Creangă Ileana, Fizică (I), Ed. Matrix Rom, București, 200.	5.	

- 2. Creangă Ileana, Fizică (II), Ed. Matrix Rom, București, 2014.
- 3. Boer A., Optică, Ed. Matrix Rom, București, 2006.
- 4. Demșoreanu B., Mecanică teoretică, Tipografia Universității Timișoara, 1991.
- 5. Irina Nicoară, Introducere în optică, Tipografia Universității Timișoara, 1990.
- 6. I. Luminosu, Fizică, Tipografia Universității Tehnice "Politehnica" Timișoara, 1991.
- 7. Alin C. Teușdea, Fizică generală prin aplicații practice, Ed. Universității din Oradea, ediția a 2-a, 2012, ISBN 978-606-10-0778-3; 53(075.8).
- 8. Alin C. Teuşdea, Elemente de biofizică în tehnică, Curs, 2012.
- 9. Lungu, C., 2002, Principii generale de conservare a produselor alimentare, Universitatea "Dunărea de Jos" IDD, Galați.

8.2 Seminar	Methods of teaching	No. of
		hours/
		Remarks
8.3 Laboratory		
NTSM and the rules of operation of the laboratory	systematic exposure	2
of Biophysics processing		/experiment
Processing of experimental data. Errors calculation	systematic exposure,	2
	conversation, problem-solving,	/experiment
Errors propagation	systematic exposure,	2
	conversation, problem-solving,	/experiment
The least squares method	systematic exposure,	2
	conversation, problem-solving,	/experiment
Weighing methods with balance. Determination of	systematic exposure,	2
the density of liquids by the pycnometer method.	conversation, problem-solving,	/experiment
Determination of surface tension coefficient with	systematic exposure,	2
stalagmometer.	conversation, problem-solving,	/experiment
Measuring viscosity of liquids with Ostwald	systematic exposure,	2
viscometer.	conversation, problem-solving,	/experiment
Determination of specific heat to solids by	systematic exposure,	2
calorimetric method.	conversation, problem-solving,	/experiment
Determination of the concentration of a solution	systematic exposure,	2
with the density calibration curve	conversation, problem-solving,	/experiment
Determination of the concentration of a solution	systematic exposure,	2
with the calibration curve of the dynamic viscosity	conversation, problem-solving,	/experiment
Composition of perpendicular harmonic oscillations	systematic exposure,	2
(Lissajous 2D and 3D figures)	conversation, problem-solving,	/ simulation
Heat transfer through a multilayer structure	systematic exposure,	2
(3 layers) plan - parallel.	conversation, problem-solving,	/ simulation
Heat transfer through a planar - parallel multilayer	systematic exposure,	2
structure (5 layers), with vapor barrier.	conversation, problem-solving,	/ simulation
, , , , , , , , , , , , , , , , , , ,		
8.4 Project	-	-

Bibliography

- 1. Creangă Ileana, Fizică (I), Ed. Matrix Rom, București, 2005.
- 2. Creangă Ileana, Fizică (II), Ed. Matrix Rom, București, 2014.
- 3. Boer A., Optică, Ed. Matrix Rom, București, 2006.
- 4. Demșoreanu B., Mecanică teoretică, Tipografia Universității Timișoara, 1991.
- 5. Irina Nicoară, Introducere în optică, Tipografia Universității Timișoara, 1990.
- 6. I. Luminosu, Fizică, Tipografia Universității Tehnice "Politehnica" Timișoara, 1991.
- 7. Alin C. Teușdea, Fizică generală prin aplicații practice, Ed. Universității din Oradea, ediția a 2-a, 2012,

ISBN 978-606-10-0778-3; 53(075.8).

Lungu, C., 2002, Principii generale de conservare a produselor alimentare, Universitatea "Dunărea de Jos" IDD, Galați.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final grade			
10.4 Course	Written exam	Written paper	50%			
10.5 Seminar	-	-	-			
10.6 Laboratory	Practical colloquium	Executing a practical	50%			
work/experimet						
10.7 Project						
10.8 Minimum standard of performance:						
Each of the two components of the final mark must be passed with a minimum grade of 5 (five)						

Each of the two components of the final mark must be passed with a minimum grade of 5 (five). Signature of course holder**

Date of completion	Signature of course notder***	laboratory/ project holder **
	Alin Cristian Teușdea, PhD, ateusdea@uoradea.ro	Alin C. Teuşdea, PhD ateusdea@uoradea.ro
Date of approval in the department		Signature of the Head of Department
		Lecturer Eng. Adrian V. Timar, PhD
		Dean signature
		Prof. Eng. Joan Chereii. PhD

^{8.} Alin C. Teuşdea, Elemente de biofizică în tehnică, Curs, 2012.

^{*} The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.