DISCIPLINE DESCRIPTION

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	Forestry and Forestry Engineering
1.4 Field of study	Forestry
1.5 Cycle of study	BACHELOR
1.6 Study programme/Qualification	Forestry / Forestry engineer

2. Information on the discipline

- 1110111111111111111111111111111111111					
2.1 Name of discipline	Biophysics				
2.2 Course holder Lecturer Phys. Eng. Alin Cristian TEUŞDEA, PhD					
2.3 Seminar/Laboratory/Project	Lecturer Phys. Eng. Alin Cristian TEUŞDEA, PhD				
holder					
2.4 Year of study 1 2.5 Semest	er 1 2.6 Type of evaluation Ex 2.7 Regime of discipline C				

⁽C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

3.1 Number of hours per week	2	out of which: 3.2	1	out of which 3.3	0/ 1/0
		course		seminar/laboratory/project	
3.4 Total hours in the curriculum	28	out of which: 3.5	14	out of which 3.6	0/14/0
		course		seminar/laboratory/project	
Time allotment					hours
Study assisted by manual, course support, bibliography and notes			5		
Additional documentation in the library/ on specialised electronic platforms and in the field			5		
Preparation of seminars/laboratories/ topics/reports, portfolios and essays			6		
Tutorship			0		
Examinations			6		
Other activities			0		

3.7 Total hours of individual study	22
3.9 Total hours per semester	50
3.10 Number of credits	2

4. Prerequisites (where appropriate)

1	
4.1 curriculum	-
4.2 competences	-

5. Conditions (where appropriate)

5.1. related to course	 The course is based on oral presentation with video projector, notebook with MS PowerPoint software, Adobe Reader, Internet access. Students can ask questions and have the obligation to follow the course schedule. During the course students will not be present with open mobile phones.
5.2. related to seminar/laboratory/ project	 For practical work, it is mandatory to prepare (study) each practical work a week before. Each student will conduct an individual activity with the

equipment and laboratory materials that will be completed by performing the calculations described in the laboratory guide. • During laboratory work, students are not allowed to make telephone calls within the laboratory.
--

6. Spec	cific competences acquired
Professional competences	 Identify and appropriately use the main laws and physical principles in a given context: Apply physics principles and laws in solving theoretical or practical problems under qualified assistance. To develop the ability to explain phenomena in food engineering as a consequence of applying physics laws in the context of the complexity of forestry engineering To develop the ability to use lab techniques necessary for food engineering designing experimental design, obtaining experimental data, analyzing and interpreting them and formulating conclusions To apply the knowledge in the physics field of both in concrete situations in related fields and in experiments, using standard laboratory equipment.
Transversal competences	 To demonstrate preoccupation for professional development through the use of practical thinking skills, engineering To participate in scientific projects Acquiring / completing the information needed to assimilate the content of disciplines in forestry engineering

7. Objectives of discipline (coming from the specific competences acquired)

7. Objectives of discipline (coming from the specific competences acquired)				
7.1 General objective	 Acquiring specific the language and the notions related to 			
	physical phenomena that arise in the field of forestry			
7.2 Specific objectives	 Acquiring specific language 			
-	 Acquiring insights regarding the physical phenomena that 			
	arise in the field of forestry			
	 Interpretation of physics equations and their correct 			
	application in experiments			
	 Performing experimental measurements, processing and 			
	interpreting the results			
	 Identifying applications specific to the field of forestry in 			
	which the physical phenomena were studied			

8. Content*/

8.1 Course	Methods of teaching	No. of
		hours/Remarks
Physical sizes and their measurement.	systematic exposure,	1
·	conversation, problem-	
	solving,	
Errors evaluation, results processing and evaluation.	systematic exposure,	1
•	conversation, problem-	
	solving,	
Mechanics - general problems. Vector computation.	systematic exposure,	1
	conversation, problem-	
	solving,	

Kinematics . Speed and acceleration. The circular motion. The relative movement of the material point.	systematic exposure, conversation, problem- solving,	1
Dynamics and static of the material point. The principles of dynamics. Movement of the material point under the action of forces. The kinetic moment theorem. The Law of Kinetic Moment Conservation. Mechanical work and power. Kinetic energy. Potential energy. Total energy. The Law of Total Energy Conservation.	systematic exposure, conversation, problem- solving,	4
Oscillations and waves. Dynamics of harmonic oscillatory motion. Composition of harmonic oscillations. Mechanical waves.	systematic exposure, conversation, problem- solving,	1
Thermodynamic elements. The postulates of thermodynamics. The Consequences of Thermodynamics Principles	systematic exposure, conversation, problem- solving,	1
Electricity and magnetism. Maxwell's equations. Electromagnetic waves	systematic exposure, conversation, problem- solving,	1
Geometric Optics. Spherical diopter, lenses. Optical systems centered, their composition. Optical instruments.	systematic exposure, conversation, problem- solving,	1
Wave optics. Interference of light. Light diffraction.	systematic exposure, conversation, problem- solving,	1
Electromagnetic Optics. Light polarization. Applications.	systematic exposure, conversation, problem- solving,	1
Obs: * Oral exposures, videoprojector presentations, simulations		

Bibliography

- 1. Creangă Ileana, Fizică (I), Ed. Matrix Rom, București, 2005.
- 2. Creangă Ileana, Fizică (II), Ed. Matrix Rom, București, 2014.
- 3. Boer A., Optică, Ed. Matrix Rom, București, 2006.
- 4. Demșoreanu B., Mecanică teoretică, Tipografia Universității Timișoara, 1991.
- 5. Irina Nicoară, Introducere în optică, Tipografia Universității Timișoara, 1990.
- 6. I. Luminosu, Fizică, Tipografia Universității Tehnice "Politehnica" Timișoara, 1991.
- 7. Alin C. Teușdea, Fizică generală prin aplicații practice, Ed. Universității din Oradea, ediția a 2-a, 2012, ISBN 978-606-10-0778-3; 53(075.8).
- 8. Alin C. Teușdea, Elemente de biofizică în tehnică, Curs, 2012.

8.2 Seminar		
8.3 Laboratory	Methods of teaching	No. of
January January		hours/Remarks
Liquids density determination by the pycnometer	systematic exposure,	2
method.	conversation, problem-solving,	/experiment
Surface tension coefficient determination with	systematic exposure,	2
stalagmometer.	conversation, problem-solving,	/experiment
Measuring viscosity of liquids with Ostwald viscometer.	systematic exposure,	2
	conversation, problem-solving,	/experiment
Solids specific heat determination by calorimetric	systematic exposure,	2
method.	conversation, problem-solving,	/experiment
The refractive index of liquids determination with Abbe	systematic exposure,	2
refractometer.	conversation, problem-solving,	/experiment
Wheatstone Bridge. Measurement of electrical	systematic exposure,	2

resistances.	conversation, problem-solving,	/experiment
Light intensity study using photocell (air absorption	systematic exposure,	2
coefficient).	conversation, problem-solving,	/experiment
8.4 Project	-	-

Bibliography

- 1. Creangă Ileana, Fizică (I), Ed. Matrix Rom, București, 2005.
- 2. Creangă Ileana, Fizică (II), Ed. Matrix Rom, București, 2014.
- 3. Boer A., Optică, Ed. Matrix Rom, București, 2006.
- 4. Demșoreanu B., Mecanică teoretică, Tipografia Universității Timișoara, 1991.
- 5. Irina Nicoară, Introducere în optică, Tipografia Universității Timișoara, 1990.
- 6. I. Luminosu, Fizică, Tipografia Universității Tehnice "Politehnica" Timișoara, 1991.
- 7. Alin C. Teuşdea, Fizică generală prin aplicații practice, Ed. Universității din Oradea, ediția a 2-a, 2012, ISBN 978-606-10-0778-3; 53(075.8).

Alin C. Teușdea, Elemente de biofizică în tehnică, Curs, 2012.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

10. Evaluare

Type of activity	10.1 Evaluation	10.2 Evaluation methods	10.3 Share in
	criteria		the final grade
10.4 Course	Written exam	Written paper	50%
10.5 Seminar	-	-	-
10.6 Laboratory	Practical colloquium	Making a practical work/experimet	50%
10.7 Project	-	-	-
10.8 Minimum standard of performance:			

Each of the two components of the final mark must be passed with a minimum grade of 5 (five).

Date of completion	Signature of course holder**	Signature of seminar laboratory/ project holder **	
	Alin C. Teuşdea, PhD ateusdea@uoradea.ro, ateusdea@gmail.com,	Alin C. Teuşdea, PhD ateusdea@uoradea.ro ateusdea@gmail.com	
Date of approval in the department		Signature of the Head of Department	
		Prof. Eng. Ioan Vlad, PhD	
		Dean signature	
		Prof. Eng. Ioan Chereji, PhD	

^{*} The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.