Annex 6

DISCIPLINE DESCRIPTION

1. Information on the study programme

<u></u>	
1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	ENVIRONMENTAL ENGINEERING
1.4 Field of study	ENVIRONMENTAL ENGINEERING
1.5 Cycle of study	BACHELOR
1.6 Study programme/Qualification	ENGINEERING OF BIOTECHNICAL AND
	ECOLOGICAL SYSTEMS / ENGINEER

2. Information on the discipline

2.1 Name of discipline Air protection technologies								
2.2 Course holder		Lecturer Nandor Köteles Eng., Ph.D						
2.3 Seminar/Laboratory/Project holder			Lecturer Nandor Köteles Eng., Ph.D					
2.4 Year of study	III	2.5 Semeste	er	V	2.6 Type of evaluation	Ex	2.7 Regime of discipline	DS

(C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

3.1 Number of hours per week	4	out of which: 3.2	2	out of which 3.3	2
		course		seminar/laboratory/project	
3.4 Total hours in the curriculum	56	out of which: 3.5	28	out of which 3.6	28
		course		seminar/laboratory/project	
Time allotment					
					hours
Study assisted by manual, course support, bibliography and notes					15
Additional documentation in the library/ on specialised electronic platforms and in the field					15
Preparation of seminars/laboratories/ topics/reports, portfolios and essays				10	
Tutorship					10
Examinations					3
Other activities					3
3.7 Total hours of individual	56				
study					
3.9 Total hours per semester	112				
3.10 Number of credits	4+1				

4. Prerequisites (where appropriate)

4.1 curriculum	(Conditioning) Ecology, Meteorology.
4.2 competences	Knowledge of the most common technologies for protecting and purifying

the air.
Knowledge of the relevance of environmental protection and atmospheric
purification in the context of environmental protection.

5. Conditions (where appropriate)

er conditions (million appropria)
5.1. related to course	Videoprojector, Screen.
5.2. related to	Instruments related to the running of the project hours
seminar/laboratory/ project	Knowledge of the concepts contained in the design guide to be
	carried out

6. Spe	cific competences acquired
	C1.4 Qualitative and quantitative analysis of natural phenomena and technological
	processes to prevent and mitigate environmental impacts
	C1.5 Identification of scientific solutions for the implementation of professional and
	technological projects
	C2.1 Description and application of concepts, theories and practical / technological /
	engineering methods for determining the state of environmental quality
ses	C2.3 Application of basic technical and technological knowledge in defining and
enc	explaining the concepts specific to engineering and environmental protection
ipet	C3.5 Introducing the best methods of investigation available in environmental engineering
uo	projects
Professional competences	C4.5 Development of special chapters in development projects that take into account the
ion	environmental impact
fess	C5.5 Elaboration of professional projects using the modeling and simulation methods of
ro	environmental processes
<u> </u>	C6.4 Analysis of Processes and Technology Projects to Reduce Environmental Impact
Transversal competences	CT2. Identifying roles and responsibilities in a multidisciplinary team and applying
eter	relationship techniques and effective work within the team
npe	
col	
sal	
ver	
ans	
Tr	

7. Objectives of discipline (coming from the specific competences acquired)

7.1 General objective	Through its content, this course continues and deepens the			
	e , 1			
	previously learned theoretical knowledge about atmospheric			
	pollutants, presenting the basics of polluted air purification			
	technologies from various pollution-generating technologies.			
7.2 Specific objectives	Acquiring knowledge to enable: Knowing the symbols and			
	technological schemes useful in design calculations or			

environmental inspections and the most modern protection
technologies in combating environmental pollution.

8. Content*/

8.1 Course	Methods of teaching	No. of
		hours/Remarks
1. Technologies used to hold dust out of the air.	Interactive lecture	4
Sedimentation isolation technologies	with video projector	
2. Centrifugal isolation technologies (cyclones and	Interactive lecture	4
multicyclones)	with video projector	
3. Filtering isolation technologies (bag filters)	Interactive lecture	4
	with video projector	
4. Electrical isolation technologies (electrofilters).	Interactive lecture	4
Electrofilters with tubular electrodes, Electrofilters	with video projector	
with plates		
5. Wet sealing techniques (washing injector). The	Interactive lecture	4
process of passing air through liquids, The process of	with video projector	
spraying the liquid into the polluted air		
6. Venturi air purification systems, wet cyclones	Interactive lecture	4
	with video projector	
7. Sonic isolation technologies, impact isolation	Interactive lecture	4
technologies or impact separators	with video projector	
8. Emission reduction technologies for nitrogen oxides.	Interactive lecture	4
Mechanisms for the formation of nitrogen oxides,	with video projector	
Classification of methods for the reduction of NOx		
emissions		
Bibliography		
1. Borota D., Costea Monica, 2000, Poluarea aerului, Editu	ra Universității din Oradea	;
2 Calesan I 1005 Course and a structure days have I	Talitana Innina a Innin	

2. Cojocaru I., 1995, Surse procese și produse de poluare, Editura Junimea Iași;

3. Domuța C., Brejea R., 2010, Monitoringul mediului, Editura Universității din Oradea;

- 4. Iordache Gh., 2003, Metode și utilaje pentru prevenirea poluării mediului, Editura Matrix Rom, București;
- 5. Köteles Nandor, 2011, *Noțiuni practice și teoretice de poluare și depoluare a aerului atmosferic*, Editura Universității din Oradea;
- 6. Köteles Nandor, 2014, Tehnologii de protecția aerului, Notițe de curs;
- 7. Mănescu S., Cucu M., Diaconescu M. L., 1994, Chimia sanitară a mediului, Editura Medicală, București;
- 8. Moza (Pereş) Ana Cornelia, 2009, *Clima și poluarea aerului în bazinul hidrografic Crișul Repede*, Editura Universității din Oradea;
- 9. Pereș Ana Cornelia, 2011, Poluarea și autopurificarea atmosferei, Editura Universității din Oradea;
- 10. Rojanschi V., Bran Florina, Diaconu G., 1997, Protecția și ingineria mediului, Editura Economică, București;
 - 1. Tumanov S., 1989, Calitatea aerului, Editura Tehnică, București.

8.4 Project		
Design of air protection equipment	Explanations on how to	8
Designing devices that use the separation principle	calculate	
by centrifugation		

Sizing of a simple depositing chamber		
Determination of theoretical concentrations of		
atmospheric pollutants at ground level		
Determination of actual chimney height (at point	Explanations on how to	10
sources)	calculate	
Calculation of ground theoretical concentrations at	Explanations on how to	10
given points (determination of atmospheric	calculate	
diffusion capacity)		

Bibliography

- 1. Borota D., Buzașiu Olimpia, 2001, *Tehnologii de protecția aerului Îndrumar practic în proiectele de specialitate și probleme specifice*, Editura Universității din Oradea;
- 2. Iordache Gh., 2003, Metode și utilaje pentru prevenirea poluării mediului, Editura Matrix Rom, București;
- 3. Köteles Nandor, 2011, *Noțiuni practice și teoretice de poluare și depoluare a aerului atmosferic*, Editura Universității din Oradea;
- 4. Köteles Nandor, 2014, *Tehnologii de protecția aerului Îndrumar de proiectare și lucrări practice* -Notițe de proiectare;
- 5. Pereș Ana Cornelia, 2011, Poluarea și autopurificarea atmosferei, Editura Universității din Oradea;
- 6. Ordin MAPPM nr.462, 1993, Condiții tehnice privind protecția atmosferei, București;
- 7. Ordin MAPM nr. 592, 2002, Normativ privind stabilirea valorilor limită, a valorilor de prag și a criteriilor și metodelor de evaluare a dioxidului de sulf, dioxidului de azot și oxizilor de azot, pulberilor în suspensie (PM₁₀ și PM_{2,5}), plumbului, benzenului, monoxidului de carbon și ozonului din aerul înconjurător, București;
 - 8. STAS nr.10331, 1992, Principii și reguli de supraveghere a calității aerului.

* The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

• The content of the discipline is adapted and satisfies the requirements imposed by the labor market, being agreed by social partners, professional associations and employers in the field of the bachelor's program. The content of the discipline is found in the curriculum of the Environmental Engineering specialization and other academic centers in Romania that have accredited these specializations, so knowing the basic notions is a stringent requirement of the employers in the field of the environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final
			grade
10.4 Course	Assessment of	Oral exam	100%
	knowledge of course		
	content -		
	minimum grade 5		
10.5 Seminar	-	-	-
10.6 Laboratory	-	-	-

10.7 Project	- Drawing up and presenting a report -	Supporting the project	100%	
	minimum grade 5			
10.8 Minimum standard of	of performance			
Undertaking coordinate	ed work to solve specific p	roblems in the field, with	the correct assessment	
of the workload, avail conditions of health and	lable resources, the time d safety at work.	required to complete an	nd the risks under the	
Date of completion	Signature of course ho		Signature of seminar laboratory/project holder **	
Lecturer Nandor Köteles Eng., Ph.D kotelesnandor@yahoo.com		Lecturer Nandor Köteles Eng., Ph.D kotelesnandor@yahoo.com		
Date of approval in the department		Signature of the Head of Department		
]	Dean signature	
** - Name, first name, aca	demic degree and contact det	ails (e-mail, web page, etc.)) will be specified.	