Annex 6

DISCIPLINE DESCRIPTION

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	ENVIRONMENTAL ENGINEERING
1.4 Field of study	ENVIRONMENTAL ENGINEERING
1.5 Cycle of study	
1.6 Study programme/Qualification	BIOTECHNICAL AND ECOLOGICAL SYSTEMS
	ENGINEERING

2. Information on the discipline

2.1 Name of discipline	PROBABILITY THEORY AND MATEMATICAL					
	ST	STATISTICS				
2.2 Course holder s.1. dr. Monica COSTEA						
2.3 Seminar/Laboratory/Project	s.1.	s.l. dr. Monica COSTEA				
holder						
2.4 Year of study I 2.5 Semester	er	2	2.6 Type of	Е	2.7 Regime of discipline	С
			evaluation			

(C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

4

3.1 Number of hours per week	4	out of which: 3.2 course	2	out of which 3.3 seminar/laboratory/project	2
3.4 Total hours in the curriculum	56	out of which:	28	out of which 3.6	28
		3.5 course		seminar/laboratory/project	
Time allotment					
					hou
					rs
Study assisted by manual, course support, bibliography and notes					28
Additional documentation in the library/ on specialised electronic platforms and in the field					10
Preparation of seminars/laboratories/ topics/reports, portfolios and essays					2
Tutorship					2
Examinations					2
Other activities					
3.7 Total hours of individual 44					
study					
3.9 Total hours per semester	100				

4. Prerequisites (where appropriate)

3.10 Number of credits

4.2 competences	

5. Conditions (where appropriate)

5.1. related to course	Classroom with appropriate infrastructure, PC, projector, internet
	access
5.2. related to	Facility adequate laboratory infrastructure, PC, Software for
seminar/laboratory/ project	statistical processing of data

6. Spec	cific competences acquired
Professional competences	 C1. Explain the mechanisms, processes and effects of natural or anthropogenic origin and influences that cause environmental pollution Analysis of the quality and quantity of natural phenomena and processes to prevent and minimize environmental impact, Aplication Basic scientific knowledge in defining and explaining the specific concepts and environmental engineering, Definition Fundamental concepts needed to apply scientific theories and methodology of the environment. Identify solutions professional scientific and technological project implementation, Use Basic scientific knowledge in defining and explaining the specific concepts and environment. Identify solutions professional scientific and technological project implementation, Use Basic scientific knowledge in defining and explaining the specific concepts and environmental engineering C4. Using legal norms and best available technologies (BAT) to prevent and mitigate impacts of natural and anthropogenic environmental Adapting professional standards and methodologies projects BAT / BREF Identify the legal rules and regulations in accordance with best practices specific to mitigate the negative environmental impact Hierarchy information for compiling and completing the databases of Biotechnical and Ecological Systems Selecting and adapting methodologies to specific environmental factors (water, air, soil) and their typology for sustainable development.
petences	 Efficient use of rules (standards, legislation, etc.) working in defining variants and variant identification of optimal C2 Management and resolution of specific environmental issues for sustainable development: Aplicarea Technical and technological knowledge in defining and explaining basic concepts specific to engineering and environmental protection, Description And applying concepts, theories and practical methods / technology / engineering
Transversal competences	 Valuate the quality and quantity of natural phenomena and human activities on the quality of environmental factors, Explicarea And interpretation of concepts, methods and models of basic environmental engineering problems, Identify the best technical and technological solutions for implementing professional projects for engineering and environmental protection

7. Objectives of discipline (coming from the specific competences acquired)

7.1 General objective	The student should understand and be able to work with physical concepts underlying the phenomena of pollution, protection technologies and associated physical phenomena.
7.2 Specific objectives	Presentation of phenomena, laws, principles, relations and specific rules, as well as new trends and guidelines in the field,

emphasizing the role of information and on the formative physics,
the fundamental discipline process and technical education,
understanding the discipline, in close correlation with the
implications it has on the development of science, technology and
engineering technology.

8. Content*/

8.1 Course	Methods of teaching	No. of hours/Remarks
Course.1 Chapter I. Elements of descriptive statistics for univariate distributions. I.1. Statistics in environmental and biological research. I.2. The experimental. Sampling and statistical inference.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 2. I.3. Data types and scales of measurement. I.4. Classification tables. I.5. Graphical representations of univariate distributions. I.6. Measurement of central tendency	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 3. I.7. The measurement of dispersion and variability. I.8. Indices of form: symmetry and yard.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 4. I.9. Accuracy, precision and choosing the number of significant digits	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 5. I. 10. Representations semi-graphical distributions: box-and -whisher and stem and leaf.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 6. Cap. II. Elements of Mathematical Statistics II. 1. Elements of combinatorial calculation. II. 2. Definitions of probability	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 7. II. 3. Discrete distributions: binomial distribution, Poisson.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 8. II. 3. Discrete Distributions: hypergeometric, negative	Lecture, debate, problem solving,	2

binomial.	Experiment frontal, guided discovery	
Course 9. II. 4. Distributions continue: normal distribution asymptotically normal distribution, inequality of Cebâşev and normal distribution.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 10. II. 5. Approximations and correction for continuity.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 11. II. 6. Samples derived from normal distributions: the distribution of hi square, Student's t distribution, the distribution F Fisher.		2
Course 12. Cap. III. Elements of inferential statistics III. 1. The central limit theorem. III. 2. Interval estimation of the mean value. III. 3. Test statistic. III. 4. Null hypothesis. The level of significance. III. 5. t test of a population mean.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 13 III. 6. Comparisons between the two samples. III. 7. F-test for comparison of the variances of two different samples. III. 8. Comparison of proportions: hi square method, techniques Comparison between observed and theoretical proportions.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2
Course 14 III. 9. Criteria for selecting statistical tests. III.10. Elements of correlation analysis.	Lecture, debate, problem solving, Experiment frontal, guided discovery	2

Bibliography

1. E. Jaba, Ana Grama: Analiza statistică cu SPSS sub Windows, Ed. Polirom 2004

2. GabrielaBeganu (coordonator) et. alt. Teoria Probabilităților și Statistică matematică Meteor press, București 2006

3. Gabriela Beganu (coordonator) et. alt. Teoria probabilităților și statistică matematică – Culegere de probleme Meteor Press, București, 2006

4. Decebal Ciurchea, Introducere în procesarea datelor experimentale, Editura BIT, Iași 2001

5. Ioan Cuculescu, Teoria Probabilităților, Editura ALL 1998

6. Monica Costea, Analiza statistica pentru stiintele mediului ,Editura Univ. Oradea, 2014, ISBN 978-606-10-1457-6

8.3 Laboratory

	Lectures, taking	2
	measurements, problems	
	with given situations,	
	statistical programs.	
2. How are distributed values measured variable.	Lectures, taking	2
	measurements, problems	
	with given situations,	
	statistical programs.	
	Lectures, taking	2
	measurements, problems	2
A A	with given situations,	
	-	
	statistical programs.	2
* *	Lectures, taking	2
	measurements, problems	
	with given situations,	
	statistical programs.	
5. Representations semigraphical box-and-whisher	Lectures, taking	2
and steam and leaf. Applications.	measurements, problems	
	with given situations,	
	statistical programs.	
	Lectures, taking	2
	measurements, problems	_
	with given situations,	
	statistical programs.	
	Lectures, taking	2
-	· ·	2
	measurements, problems	
	with given situations,	
	statistical programs.	
1	Lectures, taking	2
	measurements, problems	
	with given situations,	
	statistical programs.	
	Lectures, taking	2
	measurements, problems	
11	with given situations,	
	statistical programs.	
	Lectures, taking	2
-	measurements, problems	-
* *	with given situations,	
	-	
	statistical programs.	2
	Lectures, taking	2
	measurements, problems	
	with given situations,	
	statistical programs.	
12 Student distribution Applications	Lectures, taking	2
	measurements, problems	-

	with given situations, statistical programs.	
13. Statistical tests. Applications.	Lectures, taking measurements, problems with given situations, statistical programs.	2
14. Assessment of knowledge	Practical examination	2

Bibliography

- 7. E. Jaba, Ana Grama: Analiza statistică cu SPSS sub Windows, Ed. Polirom 2004
- 8. GabrielaBeganu (coordonator) et. alt. Teoria Probabilităților și Statistică matematică Meteor press, București 2006
- 9. Gabriela Beganu (coordonator) et. alt. Teoria probabilităților și statistică matematică Culegere de probleme Meteor Press, București, 2006
- 10. Decebal Ciurchea, Introducere în procesarea datelor experimentale, Editura BIT, Iași 2001
- 11. Ioan Cuculescu, Teoria Probabilităților, Editura ALL 1998
- 12. Monica Costea, Analiza statistica pentru stiintele mediului ,Editura Univ. Oradea, 2014, ISBN 978-606-10-1457-6

* The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

 Course content can be found in the curriculum specialization Environmental engineering, environmental engineering and biotechnical systems and other universities that have accredited the specializations. During the course builds useful knowledge both environmental officers in local authorities, industry and companies active in the management of environmental factors.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final grade
10.4 Course	Knowledge of theoretical concepts delivered in class	Evaluation of theoretical knowledge	70%
10.5 Seminar			
10.6 Laboratory	The ability to make measurements with the instruments, computerized statistical processing of a data set	Assessment of practical skills	30%
10.7 Project			
10.8 Minimum standar	d of performance	L	L

01.10.2020

lect. phd. Monica Costea costea.monica@yahoo.it