Annex 6

DISCIPLINE DESCRIPTION

1. Information on the study programme

1.1 Academic institution	UNIVERSITY OF ORADEA
1.2 Faculty	FACULTY OF ENVIRONMENTAL PROTECTION
1.3 Department	ENVIRONMENTAL ENGINEERING
1.4 Field of study	ENVIRONMENTAL ENGINEERING
1.5 Cycle of study	
1.6 Study programme/Qualification	BIOTECHNICAL AND ECOLOGICAL SYSTEMS
	ENGINEERING

2. Information on the discipline

2.1 Name of discipl	line		NO	NOISE POLLUTION					
2.2 Course holder			s.1.	s.l. dr. Monica COSTEA					
2.3 Seminar/Labora	tory/	Project	s.l. dr. Monica COSTEA						
holder									
2.4 Year of study	3	2.5 Semeste	er	5	2.6 Type of		С	2.7 Regime of discipline	0
					evaluation				
(0) 0 1 (0) 0 (1 1) (E) E1 (1)									

(C) Compulsory; (O) Optional; (E) Elective

3. Total estimate time (hours per semester of didactic activities)

2.1 North on of hours non-mode			1	and of which 2.2	1
3.1 Number of hours per week	4	out of which:	2	out of which 3.3	1
		3.2 course		seminar/laboratory/project	
3.4 Total hours in the curriculum	42	out of which:	28	out of which 3.6	14
		3.5 course		seminar/laboratory/project	
Time allotment					
					hou
					rs
Study assisted by manual, course su	pport, bi	bliography and no	tes		26
Additional documentation in the library/ on specialised electronic platforms and in the field					4
Preparation of seminars/laboratories/ topics/reports, portfolios and essays					2
Tutorship					2
Examinations					2
Other activities					
3.7 Total hours of individual	36				
study					
3.9 Total hours per semester	78				
3.10 Number of credits	3				

4. Prerequisites (where appropriate)

4.1 curriculum	
4.2 competences	

5. Conditions (where appropriate)

et et automs (milite appropria	
5.1. related to course	PC, projector, internet access
5.2. related to	Instruments, tools specific physics laboratory, PC, Soft statistical
seminar/laboratory/ project	processing of data

6. Spee	cific competences acquired
	 C1. Explain the mechanisms, processes and effects of natural or anthropogenic origin and influences that cause environmental pollution Analysis of the quality and quantity of natural phenomena and processes to prevent and minimize environmental impact, Aplication Basic scientific knowledge in defining and explaining the specific concepts and environmental engineering, Definition Fundamental concepts needed to apply scientific theories and methodology of the environment. Identify solutions professional scientific and technological project implementation, Use Basic scientific knowledge in defining and explaining the specific concepts and environmental engineering
Professional competences	 C4. Using legal norms and best available technologies (BAT) to prevent and mitigate impacts of natural and anthropogenic environmental Adapting professional standards and methodologies projects BAT / BREF Identify the legal rules and regulations in accordance with best practices specific to mitigate the negative environmental impact Hierarchy information for compiling and completing the databases of Biotechnical and Ecological Systems Selecting and adapting methodologies to specific environmental factors (water, air, soil) and their typology for sustainable development. Efficient use of rules (standards, legislation, etc.) working in defining variants and variant identification of optimal
Transversal competences	 C2 Management and resolution of specific environmental issues for sustainable development: Aplicarea Technical and technological knowledge in defining and explaining basic concepts specific to engineering and environmental protection, Description And applying concepts, theories and practical methods / technology / engineering for the determination of environmental quality, Valuate the quality and quantity of natural phenomena and human activities on the quality of environmental factors, Explicarea And interpretation of concepts, methods and models of basic environmental engineering problems, Identify the best technical and technological solutions for implementing professional projects for engineering and environmental protection

7. Objectives of discipline (coming from the specific competences acquired)

	The student should an denote a double to make with a basical			
7.1 General objective	The student should understand and be able to work with physical			
5	concepts underlying the phenomena of pollution, protection			
	technologies and associated physical phenomena.			
7.2 Specific objectives	Presentation of phenomena, laws, principles, relations and specific			
1 5	rules, as well as new trends and guidelines in the field,			
	emphasizing the role of information and on the formative physics,			
	the fundamental discipline process and technical education,			
	understanding the discipline, in close correlation with the			

implications it has on the development of science, technology and
engineering technology.

8. Content*/

		N C
8.1 Course	Methods of teaching	No. of
	T (11)	hours/Remarks
Course.1	Lecture, debate,	2
1. Sizes fundamental sound.	problem solving,	
	Experiment frontal,	
	guided discovery	
Course 2.	Lecture, debate,	2
1. Sizes fundamental sound. (continued)	problem solving,	
	Experiment frontal,	
	guided discovery	
Course 3.	Lecture, debate,	2
2. The acoustic field. Free field.	problem solving,	-
	Experiment frontal,	
	guided discovery	
Course 4	÷ ·	2
Course 4.	Lecture, debate,	2
2. The acoustic field. Reverberant field.	problem solving,	
	Experiment frontal,	
	guided discovery	
Course 5.	Lecture, debate,	2
3. Elements of psychoacoustics.	problem solving,	
	Experiment frontal,	
	guided discovery	
Course 6.	Lecture, debate,	2
4. Means of protection against noise in buildings.	problem solving,	
Absorbing systems.	Experiment frontal,	
	guided discovery	
Course 7.	Lecture, debate,	2
4. Means of protection against noise in buildings.	problem solving,	2
Acoustic materials.	Experiment frontal,	
Acoustic materials.	guided discovery	
Course 8.	Lecture, debate,	2
	· · · ·	2
5. Acoustic instruments.	problem solving,	
Lecture 9.	Experiment frontal,	
	guided discovery	
Course 9.	Lecture, debate,	2
5. Acoustic instruments. (continued)	problem solving,	
	Experiment frontal,	
	guided discovery	
Course 10	Lecture, debate,	2
6. Acoustic Measurements and normative.	problem solving,	
	Experiment frontal,	
	guided discovery	
	Builded dibeo very	

Course 11.	Lecture, debate,	2
7. Noise pollution caused by traffic	problem solving,	
······································	Experiment frontal,	
	guided discovery	
Course 12	Lecture, debate,	2
7. Noise pollution caused by traffic (continued)	problem solving,	-
(continued)	Experiment frontal,	
	guided discovery	
Course 13	Lecture, debate,	2
8. Noise pollution caused by industrial activities.	problem solving,	2
o. Hoise ponution edused by industrial derivities.	Experiment frontal,	
	guided discovery	
Course 14	Lecture, debate,	2
9. Establishment of strategic noise maps	problem solving,	2
7. Establishment of strategie holse maps	Experiment frontal,	
	guided discovery	
Bibliography	guided discovery	
1. E. Boeker, R. Van Grondelle, Environmental Phz	sics John Wiley & Sons Chicher	ster 1995
	-	
 G.M. Master, Introduction to Environmental Engi Englewood Cliffs, New Jersey, 1991. 	neering and Science, Prentice Ha	ıll,
3. V. Simon, Introducere in fizica mediului, Presa U	niversitara Clui 2001	
4. V.Simon, Radiatiile nucleare si mediul inconjurat		
5. Journal of Environmental Quality, http://jeq.scijo	urnals.org/	
Journal of Environmental Health, http://www.neha.org/JEH/		
8.3 Laboratory		
1. Sources errors in the measurement of	Lectures, taking	1
environmental noise	measurements, problems	
	with given situations,	
	statistical programs.	
2. Acustica physics. Quantities and units.	Lectures, taking	1
Terminology.	measurements, problems	
	with given situations,	
	statistical programs.	
3. Attenuation sound. Calculation of sound level in	Lectures, taking	1
the external environment. Calculation of sound	measurements, problems	-
level in the external environment with barier	with given situations,	
protectors.	statistical programs.	
4. Calculation of equivalent noise level during a	Lectures, taking	1
working day in reverberant environment and in	measurements, problems	1
open field.	with given situations,	
open neta.	statistical programs.	
5 Calculation of noise in reverbarant field. Image		1
5. Calculation of noise in reverberant field. Image	Lectures, taking	1
source method.	measurements, problems	
	with given situations,	

	statistical programs.	
6. Calculation of noise reverberant field and semi-	Lectures, taking	1
reverberant. Calculation tail noise and	measurements, problems	
reverberation time	with given situations,	
	statistical programs.	
7. Determination of sound power levels of noise	Lectures, taking	1
sources using sound pressure.	measurements, problems	
	with given situations,	
	statistical programs.	
8. Physical and PSIO-physiological acoustics.	Lectures, taking	1
Calculation of strength and level of strength of	measurements, problems	
sounds and noises. simplified method of	with given situations,	
calculation.	statistical programs.	
9. Curves normal level of strength equal	Lectures, taking	1
relationships between acoustic and sound pressure	measurements, problems	
levels.	with given situations,	
	statistical programs.	
10. Attenuation of sound during propagation	Lectures, taking	1
outdoors. calculation of atmospheric absorption	measurements, problems	
	with given situations,	
	statistical programs.	
11. The methods of calculation of noise indicators	Lectures, taking	1
for noise from industrial activities in the areas of	measurements, problems	
road, rail and air nearby airports	with given situations,	
	statistical programs.	
12. Application STAS 6156-86 Protection against	Lectures, taking	1
noise in civil, social and cultural. Permissible	measurements, problems	
limits and parameters of sound insulation;	with given situations,	
	statistical programs.	
13. Building acoustics. Measurement of noise in	Lectures, taking	1
civil engineering. Test methods	measurements, problems	
	with given situations,	
	statistical programs.	
14. Assessment of knowledge	Practical examination	1
Bibliography	in the Wile Cons Chine	

1. E. Boeker, R. Van Grondelle, Environmental Phzsics, John Wiley & Sons, Chichester, 1995

2. G.M. Master, Introduction to Environmental Engineering and Science, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

3. V. Simon, Introducere in fizica mediului, Presa Universitara, Cluj, 2001.

4. V.Simon, Radiatiile nucleare si mediul inconjurator, Casa Cartii de Stiinta, 2004.

Journal of Environmental Quality, <u>http://jeq.scijournals.org/</u>
 Journal of Environmental Health, http://www.neha.org/JEH/

* The content, respectively the number of hours allocated to each course / seminar / laboratory / project will be detailed during the 14 weeks of each semester of the academic year.

9. Corroboration of discipline content with the expectations of the epistemic community, professional associations and representative employers from the field corresponding to the study programme

 Course content can be found in the curriculum specialization Environmental engineering, environmental engineering and biotechnical systems and other universities that have accredited the specializations. During the course builds useful knowledge both environmental officers in local authorities, industry and companies active in the management of environmental factors.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final
			grade
10.4 Course	Knowledge of	Evaluation of	70%
	theoretical concepts	theoretical knowledge	
	delivered in class	_	
10.5 Seminar			
10.6 Laboratory	The ability to make measurements with the instruments, computerized statistical processing of a data set	Assessment of practical skills	30%
10.7 Project			
10.8 Minimum standa	ard of performance	1	

01.10.2020

lect. phd. Monica Costea costea.monica@yahoo.it